Methodology for statistical detection of climate change

Aurélien RIBES, Jean-Marc AZAÏS, Serge PLANTON

October 11, 2007

According to the IPCC 2001 report, "detection is the process of demonstrating that an observed change is significantly different (in a statistical sense) than can be explained by natural internal variability".

The climate is represented by a p-dimensional random vector ψ, which takes one value per year. The p dimensions correspond to the p observation stations taken into account. In order to compute an efficient detection test for an observation ψ_{n+1}, we use the following framework and hypothesis:

- $(\psi_i)_{i \in \llbracket 1, n \rrbracket} \in \mathbb{R}^p$ are random variables, independent and identically distributed, of distribution $N(0, C)$
- $\psi_{n+1} \in \mathbb{R}^p$ is a random variable, independent of the $(\psi_i)_{i \in \llbracket 1, n \rrbracket}$, of distribution $N(\mu g, C)$

where ψ corresponds to the climate vector studied, $g \in \mathbb{R}^p$ is the climate change vector, $\mu \in \mathbb{R}$ is an amplitude coefficient, and $C \in M_p(\mathbb{R})$ is the covariance matrix of ψ.

A detection algorithm has to test the hypothesis $H_0 : \mu = 0$, versus $H_1 : \mu > 0$. We investigate here the construction of a detection test which is efficient, relatively to a very simple one, particularly in the case "n and p are of the same order". We then illustrate this method with some climate applications.