Title Algebraic Curves for Commuting Elements in the q-deformed Heisenberg Algebra
Authors Marcel de Jeu, Christian Svensson, Sergei Silvestrov
Alternative Location http://arxiv.org/abs/0710.2748
Publication LUTFMA-5089-2007/1-17/(2007)
Year 2007
Issue 23
Pages 17
Document type Preprint
Status Published
Language eng
Abstract English In this paper we extend the eliminant construction of Burchnall and Chaundy for commuting differential operators in the Heisenberg algebra to the q-deformed Heisenberg algebra and show that it again provides annihilating curves for commuting elements, provided q satisfies a natural condition. As a side result we obtain estimates on the dimensions of the eigenspaces of elements of this algebra in its faithful module of Laurent series
Keywords q-deformed Heisenberg algebra, commuting elements, Burchnall-Chaundy eliminant construction, algebraic dependence,
ISBN/ISSN/Other ISSN: 1403-9338

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)