Title Approximation numbers = singular values
Authors Christer Bennewitz
Alternative Location http://dx.doi.org/10.1016/j..., Restricted Access
Publication Journal of Computational and Applied Mathematics
Year 2007
Volume 208
Issue 1
Pages 102 - 110
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher Elsevier
Abstract English This paper introduces a generalisation of the notion of singular value for Hilbert space operators to more general Banach spaces. It is shown that for a simple integral operator of Hardy type the singular values are the eigenvalues of a non-linear Sturm-Liouville equation and coincide with the approximation numbers of the operator. Finally, asymptotic formulas for the singular numbers are deduced. (c) 2006 Published by Elsevier B.V.
Keywords Pruefer transform, eigenvalue, generalised trigonometric function, asymptotics, Bernstein width, Sturm-Liouville,
ISBN/ISSN/Other ISSN: 0377-0427

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)