Title Weyl product algebras and modulation spaces
Authors Anders Holst, Joachim Toft, Patrik Wahlberg
Alternative Location http://dx.doi.org/10.1016/j..., Restricted Access
Publication Journal of Functional Analysis
Year 2007
Volume 251
Issue 2
Pages 463 - 491
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher Elsevier Science Inc.
Abstract English We discuss algebraic properties of the Weyl product acting on modulation spaces. For a certain class of weight functions omega we prove that M-(omega)(p,q) is an algebra under the Weyl product if p epsilon 1, infinity and 1 <= q <= min(p, p '). For the remaining cases P epsilon 1, infinity and min(p, p ') < q <= infinity we show that the unweighted spaces M-p,M-q are not algebras under the Weyl product. (C) 2007 Elsevier Inc. All rights reserved.
Keywords modulation spaces, Weyl calculus, pseudo-differential calculus, Banach, algebras,
ISBN/ISSN/Other ISSN: 0022-1236

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)