Title Convergence of multistep time discretizations of nonlinear dissipative evolution equations
Authors Eskil Hansen
Alternative Location http://dx.doi.org/10.1137/0..., Restricted Access
Publication SIAM Journal on Numerical Analysis
Year 2006
Volume 44
Issue 1
Pages 55 - 65
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher SIAM Publications
Abstract English Global error bounds are derived for multistep time discretizations of fully nonlinear evolution equations on infinite dimensional spaces. In contrast to earlier studies, the analysis presented here is not based on linearization procedures but on the fully nonlinear framework of logarithmic Lipschitz constants and nonlinear semigroups. The error bounds reveal how the contractive or dissipative behavior of the vector field, governing the evolution, and the properties of the multistep method influence the convergence. A multistep method which is consistent of order p is proven to be convergent of the same order when the vector field is contractive or strictly dissipative, i.e., of the same order as in the ODE-setting. In the contractive context it is sufficient to require strong zero-stability of the method, whereas strong A-stability is sufficient in the dissipative case.
Keywords convergence, stability, multistep methods, dissipative maps, nonlinear evolution equations, logarithmic Lipschitz constants,
ISBN/ISSN/Other ISSN: 0036-1429

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)