| Title | Algebraic curves for commuting elements in the q-deformed Heisenberg algebra |
| Authors | M. de Jeu, Charlotte Svensson, Sergei Silvestrov |
| Alternative Location | http://dx.doi.org/10.1016/j..., Restricted Access |
| Publication | Journal of Algebra |
| Year | 2009 |
| Volume | 321 |
| Issue | 4 |
| Pages | 1239 - 1255 |
| Document type | Article |
| Status | Published |
| Quality controlled | Yes |
| Language | eng |
| Publisher | Academic Press Inc Elsevier Science |
| Abstract English | In this paper we extend the eliminant construction of Burchnall and Chaundy for commuting differential operators in the Heisenberg algebra to the q-deformed Heisenberg algebra and show that it again provides annihilating curves for commuting elements, provided q satisfies a natural condition. As a side result we obtain estimates on the dimensions of the eigenspaces of elements of this algebra in its faithful module of Laurent series. (C) 2008 Elsevier Inc. All rights reserved. |
| Keywords | q-Deformed Heisenberg algebra, Commuting elements, Algebraic dependence, Eliminant, DIFFERENCE OPERATORS, |
| ISBN/ISSN/Other | ISSN: 0021-8693 |
Questions: webmaster
Last update: 2013-04-11
Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)