| Title | Burchnall-Chaundy annihilating polynomials for commuting elements in Ore extension rings |
| Authors | Johan Richter, Sergei Silvestrov |
| Alternative Location | http://dx.doi.org/10.1088/1... |
| Publication | Journal of Physics: Conference Series |
| Year | 2012 |
| Volume | 346 |
| Document type | Article |
| Status | Published |
| Quality controlled | Yes |
| Language | eng |
| Publisher | IOP Science |
| Abstract English | In this article further progress is made in extending the Burchnall-Chaundy type determinant construction of annihilating polynomial for commuting elements to broader classes of rings and algebras by deducing an explicit general formula for the coefficients of the annihilating polynomial obtained by the Burchnall-Chaundy type determinant construction in Ore extension rings. It is also demonstrated how this formula can be used to compute the annihilating polynomials in several examples of commuting elements in Ore extensions. Also it is demonstrated that additional properties which may be possessed by the endomorphism, such as for example injectivity, may influence strongly the annihilating polynomial. |
| Keywords | annihilating polynomial, algebraic dependence, Burchnall-Chaundy determinant construction, commuting elements, Ore extensions, |
| ISBN/ISSN/Other | ISSN: 1742-6596 (online) |
Questions: webmaster
Last update: 2013-04-11
Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)