| Title | Hankel Forms and Embedding Theorems in Weighted Dirichlet Spaces |
| Authors | Alexandru Aleman, Karl-Mikael Perfekt |
| Alternative Location | http://imrn.oxfordjournals...., Restricted Access |
| Alternative Location | http://dx.doi.org/10.1093/i..., Restricted Access |
| Publication | International Mathematics Research Notices (IMRN) |
| Year | 2011 |
| Document type | Article |
| Status | Published |
| Quality controlled | Yes |
| Language | eng |
| Publisher | Oxford University Press |
| Abstract English | We show that for a fixed operator-valued analytic function $g$ the boundedness of the bilinear (Hankel-type) form <br> $(f,h)\to\int_\D\trace{g'^*fh'}(1-|z|^2)^\alpha \, \ud A$,<br> defined on appropriate cartesian products of dual weighted Dirichlet spaces of Schatten class-valued functions, is equivalent to corresponding Carleson embedding estimates. |
| Keywords | Hankel, Operator Theory, Complex Analysis, Carleson Embedding, Vector-valued, |
| ISBN/ISSN/Other | ISSN: 1687-0247 (online) |
Questions: webmaster
Last update: 2013-04-11
Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)