Title $(\epsilon,\delta)$-Freudenthal Kantor triple systems, $\delta$-structurable algebras and Lie superalgebras
Authors Noriaki Kamiya, Daniel Mondoc, Susumu Okubo
Publication Algebras, Groups and Geometries
Year 2010
Volume 2
Issue 27
Pages 191 - 206
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher Hadronic Press
Abstract English In this paper we discuss $(\epsilon,\delta)$-Freudenthal Kantor triple systems<br> with certain structure on the subspace $L_{-2}$ of the corresponding standard<br> embedding five graded Lie (super)algebra $L(\epsilon,\delta):=L_{-2}\oplus L_{-1}\oplus L_0\oplus L_1\oplus L_2; L_i,L_j\subseteq L_{i+j}$. We recall Lie and Jordan structures associated with $(\epsilon,\delta)$-Freudenthal Kantor triple systems (see ref 26,27) and we give results for unitary and pseudo-unitary $(\epsilon,\delta)$-Freudenthal Kantor triple systems. Further, we give the notion of $\delta$-structurable algebras and connect them to $(-1,\delta)$-Freudenthal Kantor triple systems and the corresponding Lie (super)<br> algebra construction.
Keywords Lie superalgebras, triple systems,
ISBN/ISSN/Other ISSN: 0741-9937

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)