Title Structurable algebras and models of compact simple Kantor triple systems defined on tensor products of composition algebras
Authors Daniel Mondoc
Alternative Location http://dx.doi.org/10.1081/A..., Restricted Access
Publication Communications in Algebra
Year 2005
Volume 33
Issue 2
Pages 549 - 558
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher Taylor & Francis, Inc.
Abstract English Let $(A,^−)$ be a structurable algebra. Then the opposite algebra $(A^{op},^−)$ is structurable, and we show that the triple system $B_A^{op}(x,y,z):=V_{x,y}^{op}(z)=x(\overline y z)+z(\overline y x)−y(\overline x z),x,y,z\in A$, is a Kantor triple system (or generalized Jordan triple<br> system of the second order) satisfying the condition $(A)$. Furthermore, if $A=\mathbb{A}_1\otimes\mathbb{A}_2$<br> denotes tensor products of composition algebras, $(^-)$ is the standard conjugation, and $(^\land)$ denotes a certain pseudoconjugation on $A$, we show that the triple systems<br> $B_{\mathbb{A}_1\otimes\mathbb{A}_2}^{op}(x,\overline{y}^\land,z)$ are models of compact Kantor triple systems. Moreover these triple systems are simple if $(dim\mathbb{A}_1,dim\mathbb{A}_2)\neq(2,2). In addition, we obtain an explicit formula for the canonical trace form for compact Kantor triple systems defined on tensor products of composition algebras.
Keywords structurable algebras, composition algebras, Kantor triple systems,
ISBN/ISSN/Other ISSN: 1532-4125 (online)

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)