| Title | Invariant subspaces with finite codimension in Bergman spaces |
| Authors | Alexandru Aleman |
| Alternative Location | http://www.jstor.org/stable..., Restricted Access |
| Publication | Transactions of the American Mathematical Society |
| Year | 1992 |
| Volume | 330 |
| Issue | 2 |
| Pages | 531 - 544 |
| Document type | Article |
| Status | Published |
| Quality controlled | Yes |
| Language | eng |
| Publisher | American Mathematical Society |
| Abstract English | Let $\Omega$ be a domain in the complex plane. Denote by $L^p_{\roman{a}}(\Omega)$ $(1\le p<+\infty)$ the Bergman space over $\Omega$. The author presents a description of finite codimensional space $E\subset L^p_{\roman{a}}(\Omega)$ such that $zE\subset E$. Under some conditions on $\Omega$ an analogous result is due to \n S. Axler\en and \n P. Bourdon\en same journal {\bf306} (1988), no. 2, 805--817; MR0933319 (89f:46051). |
| ISBN/ISSN/Other | ISSN: 00029947 |
Questions: webmaster
Last update: 2013-04-11
Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)