Title Invariant subspaces with finite codimension in Bergman spaces
Authors Alexandru Aleman
Alternative Location http://www.jstor.org/stable..., Restricted Access
Publication Transactions of the American Mathematical Society
Year 1992
Volume 330
Issue 2
Pages 531 - 544
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher American Mathematical Society
Abstract English Let $\Omega$ be a domain in the complex plane. Denote by $L^p_{\roman{a}}(\Omega)$ $(1\le p<+\infty)$ the Bergman space over $\Omega$. The author presents a description of finite codimensional space $E\subset L^p_{\roman{a}}(\Omega)$ such that $zE\subset E$. Under some conditions on $\Omega$ an analogous result is due to \n S. Axler\en and \n P. Bourdon\en same journal {\bf306} (1988), no. 2, 805--817; MR0933319 (89f:46051).
ISBN/ISSN/Other ISSN: 00029947

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)