Title Jensen measures and boundary values of plurisubharmonic functions
Authors Frank Wikström
Alternative Location http://dx.doi.org/10.1007/B..., Restricted Access
Publication Arkiv för Matematik
Year 2001
Volume 39
Issue 1
Pages 181 - 200
Document type Article
Status Published
Quality controlled Yes
Language eng
Publisher Springer Netherlands
Abstract English We study different classes of Jensen measures for plurisubharmonic functions, in particular the relation between Jensen measures for continuous functions and Jensen measures for upper bounded functions. We prove an approximation theorem for plurisubharmonic functions inB-regular domain. This theorem implies that the two classes of Jensen measures coincide inB-regular domains. Conversely we show that if Jensen measures for continuous functions are the same as Jensen measures for upper bounded functions and the domain is hyperconvex, the domain satisfies the same approximation theorem as above.<br> The paper also contains a characterisation in terms of Jensen measures of those continuous functions that are boundary values of a continuous plurisubharmonic function.
ISBN/ISSN/Other ISSN: 1871-2487 (Online)

Questions: webmaster
Last update: 2013-04-11

Centre for Mathematical Sciences, Box 118, SE-22100, Lund. Telefon: +46 46-222 00 00 (vx)