function demo12 % ******************************************************** % *** Last changed 2012-10-25 by Johan Helsing * % *** Exterior Neumann problem for Helmholtz * % *** RCIP method and analogy with approach for Laplace * % *** Initial guess from fixed-point iteration * % ******************************************************** close all format long format compact % % *** user specified quantities ************************** itmax=800 % maximum number of GMRES iterations * theta=pi/2 % corner opening angle * nsub=52; % number of steps in recursion * zsource=0.3+0.1i; % source point * ztarg=-0.1+0.2i; % target point * % ******************************************************** T16=Tinit16; W16=Winit16; [IP,IPW]=IPWinit(T16,W16); Pbc=Pbcinit(IP); PWbc=Pbcinit(IPW); R0=initializeR(W16,T16,theta,PWbc,Pbc); sidiloc=[1;0.5;0.5;0.5;0.5;1]; LogCloc=LogCinit(sidiloc,T16,W16,6,96,0); % omegavec=logspace(0,3,1000); for omega=omegavec omega npan=round(0.6*omega+18) % *** panel breakpoints and interval lengths in parameter *** sinter=linspace(0,1,npan+1); sinterdiff=ones(npan,1)/npan; % % *** discretization points and weights *** npcoa=16*npan scoa=zeros(npcoa,1); wcoa=zeros(npcoa,1); for k=1:npan myind=k*16-15:k*16; sdif=sinterdiff(k)/2; scoa(myind)=(sinter(k)+sinter(k+1))/2+sdif*T16; wcoa(myind)=W16*sdif; end zcoa=zfunc(scoa,theta) ; zpcoa=zpfunc(scoa,theta); zppcoa=zppfunc(scoa,theta); % *** some extra presicion gained from symmetry *** zcoa(npcoa/2+1:npcoa)=conj(flipud(zcoa(1:npcoa/2))); zpcoa(npcoa/2+1:npcoa)=-conj(flipud(zpcoa(1:npcoa/2))); zppcoa(npcoa/2+1:npcoa)=conj(flipud(zppcoa(1:npcoa/2))); % ************************************************* nzcoa=-1i*zpcoa./abs(zpcoa); wzpcoa=wcoa.*zpcoa; awzpcoa=abs(wzpcoa); arclength=sum(awzpcoa) area=0.5*imag(conj(zcoa).'*wzpcoa) % % *** The K_coa^{\circ} matrix is set up *** disp('Setup of K_coa^{\circ} starts') LogCcoa=LogCinit(sinterdiff,T16,W16,npan,npcoa,1); Kcirccoa=-Kadjoperinit(LogCcoa,zcoa,zpcoa,zppcoa,awzpcoa,wcoa, ... nzcoa,omega,npcoa); starind=[npcoa-31:npcoa 1:32]; Kcirccoa(starind,starind)=zeros(64); % % *** recursion for the R matrix *** disp('Recursion starts') R=R0; for level=1:nsub denom=2^(nsub-level)*npan; sloc=[T16/4+0.25;T16/4+0.75;T16/2+1.5]/denom; zloc=zfuncloc(sloc,theta); zploc=zpfuncloc(sloc,theta); zpploc=zppfuncloc(sloc,theta); wloc=[W16/2;W16/4;W16/4;W16/4;W16/4;W16/2]/denom; nzloc=-1i*zploc./abs(zploc); awzploc=wloc.*abs(zploc); Kloc=-Kadjoperinit(LogCloc,zloc,zploc,zpploc,awzploc,wloc, ... nzloc,omega,96); MAT=eye(96)+Kloc; R=SchurBana(PWbc,Pbc,MAT,R); end Rcoa=speye(npcoa); Rcoa(starind,starind)=R; % % *** Solving main linear system *** disp('Solving main linear system starts') tmp=omega*abs(zsource-zcoa); g=tmp.*besselh(1,tmp).*real(nzcoa./(zsource-zcoa)); rhs=-2*g; [rhotildecoa,it]=myGMRESR(Kcirccoa,Rcoa,rhs,npcoa,itmax,eps); GMRES_iter_RCIP=it % % *** Post processing *** rhohatcoa=Rcoa*rhotildecoa; ufield=rhohatcoa.'*Starg(ztarg,zcoa,awzpcoa,omega) ufiref=besselh(0,omega*abs(zsource-ztarg)) myerr=abs(ufiref-ufield) myerr(myerreps Rold=R; R=SchurBana(PWbc,Pbc,MAT,R); myerr=norm(R-Rold,'fro')/norm(R,'fro'); iter=iter+1; end Init_iter=iter function M1=M1Ainit(z,zp,zpp,nz,w,wzp,N) % *** adjoint of double layer potential *** M1=zeros(N); for m=1:N M1(:,m)=abs(wzp(m))*real(nz./(z(m)-z)); M1(m,m)=-w(m)*imag(zpp(m)/zp(m))/2; end M1=M1/pi; function Kadj=Kadjoperinit(LogC,z,zp,zpp,awzp,w,nz,omega,N) Kadj=zeros(N); for m=1:N tmp=omega*abs(z-z(m)); Kadj(:,m)=tmp.*besselh(1,tmp).*real(nz./(z(m)-z))*awzp(m); Kadj(m,m)=1i/pi*imag(zpp(m)/zp(m))*w(m); end myind=find(LogC); Kadj(myind)=Kadj(myind)+2i/pi*(real(Kadj(myind)).*LogC(myind)); Kadj=1i/2*Kadj; function u=Starg(ztarg,z,awzp,omega) u=1i/4*besselh(0,omega*abs(ztarg-z)).*awzp; function A=SchurBana(PW,P,K,A) starL=17:80; circL=[1:16 81:96]; starS=17:48; circS=[1:16 49:64]; VA=K(circL,starL)*A; PTA=PW'*A; PTAU=PTA*K(starL,circL); DVAUI=inv(K(circL,circL)-VA*K(starL,circL)); DVAUIVAP=DVAUI*(VA*P); A(starS,starS)=PTA*P+PTAU*DVAUIVAP; A(circS,circS)=DVAUI; A(circS,starS)=-DVAUIVAP; A(starS,circS)=-PTAU*DVAUI; function [x,it]=myGMRESR(A,R,b,n,m,tol) % *** GMRES with low-threshold stagnation control *** V=zeros(n,m+1); H=zeros(m); cs=zeros(m,1); sn=zeros(m,1); bnrm2=norm(b); V(:,1)=b/bnrm2; s=bnrm2*eye(m+1,1); for it = 1:m it1=it+1; w=A*(R*V(:,it)); for k = 1:it H(k,it)=V(:,k)'*w; w=w-H(k,it)*V(:,k); end H(it,it)=H(it,it)+1; wnrm2=norm(w); V(:,it1)=w/wnrm2; for k=1:it-1 temp = cs(k)*H(k,it)+sn(k)*H(k+1,it); H(k+1,it)=-sn(k)*H(k,it)+cs(k)*H(k+1,it); H(k,it) = temp; end [cs(it),sn(it)]=rotmat(H(it,it),wnrm2); H(it,it)= cs(it)*H(it,it)+sn(it)*wnrm2; s(it1) =-sn(it)*s(it); s(it) = cs(it)*s(it); myerr=abs(s(it1))/bnrm2; if (myerr<=tol)|(it==m) predicted_residual=myerr y=triu(H(1:it,1:it))\s(1:it); x=fliplr(V(:,1:it))*flipud(y); true_residual=norm(x+A*(R*x)-b)/bnrm2 break; end end function [c,s]=rotmat(a,b) if b==0 c=1; s=0; elseif abs(b)>abs(a) temp=a/b; s=1/sqrt(1+temp^2); c=temp*s; else temp=b/a; c=1/sqrt(1+temp^2); s=temp*c; end function zout=zfunc(s,theta) zout=sin(pi*s).*exp(1i*theta*(s-0.5)); function zpout=zpfunc(s,theta) zpout=(pi*cos(pi*s)+1i*theta*sin(pi*s)).*exp(1i*theta*(s-0.5)); function zppout=zppfunc(s,theta) zppout=(2i*pi*theta*cos(pi*s)-(theta^2+pi^2)*sin(pi*s)).* ... exp(1i*theta*(s-0.5)); function zout=zfuncloc(s,theta) zout=zfunc(s,theta); zout=[conj(flipud(zout));zout]; function zpout=zpfuncloc(s,theta) zpout=zpfunc(s,theta); zpout=[-conj(flipud(zpout));zpout]; function zppout=zppfuncloc(s,theta) zppout=zppfunc(s,theta); zppout=[conj(flipud(zppout));zppout]; function M1=LogCinit(pinterdiff,T16,W16,nseg,N,iper) % *** Corrections to Logarithmic potential log(|tau-z|) *** % *** block-tri-diagonal output *** % *** iper=0,1 (0 is open arc, 1 is closed contour) *** [TMP,~]=LGIcompRecR(0,1,T16); TMP=diadivR(TMP,W16); M1=zeros(N); if iper==1 kstart=1; kend=nseg; else kstart=2; kend=nseg-1; end % *** central blocks *** for k=1:nseg myind=k*16-15:k*16; for nj=1:16 m=myind(nj); M1(myind,m)=-log(abs(T16(nj)-T16)); M1(m,m)=0; end M1(myind,myind)=M1(myind,myind)+TMP; end % *** superdiagonal blocks (targets to the left) *** for k=kstart:nseg myinds=k*16-15:k*16; km1=mod(k-2,nseg)+1; mi=km1*16-15:km1*16; alpha=pinterdiff(km1)/pinterdiff(k); [TMP,accept]=LGIcompRecR(-1-alpha,alpha,T16); mi=mi(accept); for nj=1:16 M1(mi,myinds(nj))=-log(abs(T16(nj)+1+(1-T16(accept))*alpha)); end TMP=TMP(accept,:); M1(mi,myinds)=M1(mi,myinds)+diadivR(TMP,W16); end % *** subdiagonal blocks (targets to the right) *** for k=1:kend myinds=k*16-15:k*16; kp1=mod(k,nseg)+1; mi=kp1*16-15:kp1*16; alpha=pinterdiff(kp1)/pinterdiff(k); [TMP,accept]=LGIcompRecR(1+alpha,alpha,T16); mi=mi(accept); for nj=1:16 M1(mi,myinds(nj))=-log(abs(T16(nj)-1-(T16(accept)+1)*alpha)); end TMP=TMP(accept,:); M1(mi,myinds)=M1(mi,myinds)+diadivR(TMP,W16); end if iper==1 M1=sparse(M1); end function A=diamultL(d,A) [~,np]=size(A); for k=1:np A(:,k)=d.*A(:,k); end function A=diadivR(A,d) [~,np]=size(A); for k=1:np A(:,k)=A(:,k)/d(k); end function [LGIV,accept]=LGIcompRecR(trans,mscale,T16); % *** T is target vector, sources on canonical interval *** LGIV=zeros(16); A=ones(16); for k=2:16 A(:,k)=A(:,k-1).*T16; end accept=1:16; T=trans+mscale*T16; accept=accept(abs(T)<2); p=zeros(17,1); q=zeros(16,1); c=((1-(-1).^(1:16))./(1:16))'; for j=1:16 p(1)=log(abs((1-T(j))/(1+T(j)))); p111=log(abs(1-T(j)^2)); for k=2:17 p(k)=T(j)*p(k-1)+c(k-1); end q(1:2:15)=(p111-p(2:2:16))./(1:2:15)'; q(2:2:16)=(p(1)-p(3:2:17))./(2:2:16)'; LGIV(j,:)=q.'/A; end function T=Tinit16 % *** 16-point Gauss-Legendre nodes *** T=zeros(16,1); T( 1)=-0.989400934991649932596154173450332627; T( 2)=-0.944575023073232576077988415534608345; T( 3)=-0.865631202387831743880467897712393132; T( 4)=-0.755404408355003033895101194847442268; T( 5)=-0.617876244402643748446671764048791019; T( 6)=-0.458016777657227386342419442983577574; T( 7)=-0.281603550779258913230460501460496106; T( 8)=-0.095012509837637440185319335424958063; T( 9)= 0.095012509837637440185319335424958063; T(10)= 0.281603550779258913230460501460496106; T(11)= 0.458016777657227386342419442983577574; T(12)= 0.617876244402643748446671764048791019; T(13)= 0.755404408355003033895101194847442268; T(14)= 0.865631202387831743880467897712393132; T(15)= 0.944575023073232576077988415534608345; T(16)= 0.989400934991649932596154173450332627; function W=Winit16 % *** 16-point Gauss-Legendre weights *** W=zeros(16,1); W( 1)= 0.027152459411754094851780572456018104; W( 2)= 0.062253523938647892862843836994377694; W( 3)= 0.095158511682492784809925107602246226; W( 4)= 0.124628971255533872052476282192016420; W( 5)= 0.149595988816576732081501730547478549; W( 6)= 0.169156519395002538189312079030359962; W( 7)= 0.182603415044923588866763667969219939; W( 8)= 0.189450610455068496285396723208283105; W( 9)= 0.189450610455068496285396723208283105; W(10)= 0.182603415044923588866763667969219939; W(11)= 0.169156519395002538189312079030359962; W(12)= 0.149595988816576732081501730547478549; W(13)= 0.124628971255533872052476282192016420; W(14)= 0.095158511682492784809925107602246226; W(15)= 0.062253523938647892862843836994377694; W(16)= 0.027152459411754094851780572456018104; function [IP,IPW]=IPWinit(T16,W16) A=ones(16); AA=ones(32,16); T32=[(T16-1)/2;(T16+1)/2]; W32=[W16;W16]/2; for k=2:16 A(:,k)=A(:,k-1).*T16; AA(:,k)=AA(:,k-1).*T32; end IP=AA/A; IPW=diadivR(diamultL(W32,IP),W16); function Pbc=Pbcinit(IP); Pbc=zeros(64,32); Pbc( 1:32, 1:16)=IP; Pbc(33:64,17:32)=flipud(fliplr(IP));