function demo11b % ******************************************************** % *** Last changed 2012-11-10 by Johan Helsing * % *** Exterior Dirichlet problem for Helmholtz * % *** RCIP method and combined field integral equation * % *** Field evaluation * % ******************************************************** close all format long format compact % % *** user specified quantities **************************** itmax=100 % maximum number of GMRES iterations * theta=pi/2 % corner opening angle * nsub=52; % number of levels in recursion * premature=48; % interruption level in reconstruction * zsource=0.3+0.1i; % source point * omega=10 % wave number * npan=46 % number of panels on coarse mesh * dlim=0.7 % closeness parameter * % Ng=300; % field evaluation at Ng^2 points * Ng=100; % field evaluation at Ng^2 points * % ********************************************************** T16=Tinit16; W16=Winit16; [IP,IPW]=IPWinit(T16,W16); Pbc=Pbcinit(IP); PWbc=Pbcinit(IPW); R0=initializeR(W16,T16,theta,PWbc,Pbc); sidiloc=[1;0.5;0.5;0.5;0.5;1]; LogCloc=LogCinit(sidiloc,T16,W16,6,96,0); % % *** panel breakpoints and interval lengths in parameter *** sinter=linspace(0,1,npan+1); sinterdiff=ones(npan,1)/npan; % % *** discretization points and weights *** npcoa=16*npan scoa=zeros(npcoa,1); wcoa=zeros(npcoa,1); for k=1:npan myind=k*16-15:k*16; sdif=sinterdiff(k)/2; scoa(myind)=(sinter(k)+sinter(k+1))/2+sdif*T16; wcoa(myind)=W16*sdif; end zcoa=zfunc(scoa,theta) ; zinter=zfunc(sinter',theta); zpcoa=zpfunc(scoa,theta); zppcoa=zppfunc(scoa,theta); % *** some extra presicion gained from symmetry *** zcoa(npcoa/2+1:npcoa)=conj(flipud(zcoa(1:npcoa/2))); itmp=round(npan/2+1); zinter(itmp:npan+1)=conj(flipud(zinter(1:npan-itmp+2))); zpcoa(npcoa/2+1:npcoa)=-conj(flipud(zpcoa(1:npcoa/2))); zppcoa(npcoa/2+1:npcoa)=conj(flipud(zppcoa(1:npcoa/2))); % ************************************************* nzcoa=-1i*zpcoa./abs(zpcoa); wzpcoa=wcoa.*zpcoa; awzpcoa=abs(wzpcoa); arclength=sum(awzpcoa) area=0.5*imag(conj(zcoa).'*wzpcoa) % % *** The K_coa^{\circ} matrix is set up *** disp('Setup of K_coa^{\circ} starts') LogCcoa=LogCinit(sinterdiff,T16,W16,npan,npcoa,1); Kopercoa=Koperinit(LogCcoa,zcoa,zpcoa,zppcoa,wzpcoa,wcoa,omega,npcoa); Sopercoa=Soperinit(LogCcoa,zcoa,zpcoa,awzpcoa,sinterdiff,omega,npcoa); clear LogCcoa Kcirccoa=Kopercoa-0.5i*omega*Sopercoa; clear Kopercoa Sopercoa starind=[npcoa-31:npcoa 1:32]; Kcirccoa(starind,starind)=zeros(64); % % *** Recursion for the R matrix *** disp('Recursion starts') R=R0; Rstor=zeros(64,64,nsub); Klocstor=zeros(96,96,nsub); for level=1:nsub denom=2^(nsub-level)*npan; sloc=[T16/4+0.25;T16/4+0.75;T16/2+1.5]/denom; zloc=zfuncloc(sloc,theta); zploc=zpfuncloc(sloc,theta); zpploc=zppfuncloc(sloc,theta); wloc=[W16/2;W16/4;W16/4;W16/4;W16/4;W16/2]/denom; wzploc=wloc.*zploc; awzploc=abs(wzploc); sidiloc=[1;0.5;0.5;0.5;0.5;1]/denom; Kloc=Koperinit(LogCloc,zloc,zploc,zpploc,wzploc,wloc,omega,96); Sloc=Soperinit(LogCloc,zloc,zploc,awzploc,sidiloc,omega,96); Klocstor(:,:,level)=Kloc-0.5i*omega*Sloc; MAT=eye(96)+Kloc-0.5i*omega*Sloc; Rstor(:,:,level)=R; R=SchurBana(PWbc,Pbc,MAT,R); end Rcoa=speye(npcoa); Rcoa(starind,starind)=R; % % *** Solving main linear system *** disp('Solving main linear system starts') g=besselh(0,omega*abs(zsource-zcoa)); rhs=2*g; [rhotildecoa,it]=myGMRESR(Kcirccoa,Rcoa,rhs,npcoa,itmax,eps); clear Kcirccoa GMRES_iter_RCIP=it % % *** Post processing *** disp('Post processing starts') % % *** rhofin locally *** nse=nsub-premature+1; rhotilde=rhotildecoa(starind); rhofinloc=zeros(16*(4+2*nse),1); Pbc=PbcinitBig(IP); for k=nsub:-1:premature Kcirc=Klocstor(:,:,k); Kcirc(17:80,17:80)=zeros(64); MAT=eye(96)+Kcirc; MAT(17:80,17:80)=inv(Rstor(:,:,k)); myind1L=(nsub-k)*16+(1:16); myind2L=(nsub+k-2*premature+5)*16+(1:16); tmp=Pbc*rhotilde; rhotilde=tmp-Kcirc*(MAT\tmp); rhofinloc([myind1L myind2L])=rhotilde([1:16 81:96]); rhotilde=rhotilde(17:80); end rhofinloc(nse*16+1:(4+nse)*16)=Rstor(:,:,premature)*rhotilde; clear Klocstor Rstor % % *** rhofin globally *** rhofin=zeros(16*(npan+2*nse),1); rhofin(1:16*(2+nse))=rhofinloc(16*(2+nse)+1:16*(4+2*nse)); rhofin(16*(2+nse)+1:16*(2+nse)+(npan-4)*16)=rhotildecoa(33:(npan-2)*16); rhofin(16*(2+nse)+(npan-4)*16+1:16*(npan+2*nse))=rhofinloc(1:16*(2+nse)); % [zfin,wzpfin,nzfin,zinterfin,npanfin]=finegrid(nse,theta,npan,W16,T16); % % *** rhohatcoa=Rcoa*rhotildecoa; Ngtot=Ng*Ng; xg=linspace(-0.1,1.1,Ng); yg=linspace(-0.53,0.53,Ng); zg=zeros(Ngtot,1); for k=1:Ng zg((k-1)*Ng+(1:Ng))=xg(k)+1i*yg; end Uref=besselh(0,omega*abs(zsource-zg)); % % *** Initial screening *** disp('Screening starts') mylist=zeros(Ngtot,1); % *** 0 => no evaluation % *** 1 => regular evaluation on coarse grid % *** 2 => some special close evaluation on coarse grid % *** 3 => some special close evaluation on fine grid cornpan=[1 npan]; panlen=zeros(npan,1); for k=1:npan panlen(k)=sum(awzpcoa((k-1)*16+1:k*16)); end for k=1:Ngtot inout=Ineval(zg(k),theta); if inout mylist(k)=1; for kk=1:npan myind=(kk-1)*16+1:kk*16; d=min(abs(zcoa(myind)-zg(k)))/panlen(kk); if ddlim Unum=Unum+rhohat.'*(Ktarg(ztarg,zsc,wzp,omega) ... -0.5i*omega*Starg(ztarg,zsc,awzp,omega)); else a=zinter(kk); b=zinter(kk+1); zmid=b+a; zdif=b-a; cc=zdif/2; nz=nzcoa(myind); ztgtr=(2*ztarg-zmid)/zdif; zsctr=(2*zsc-zmid)/zdif; LogC=LGIcompRecFAS(ztgtr,zsctr,ztarg,zsc,nz,awzp,cc); ztup=b-ztarg; ztlo=a-ztarg; CauC=M1IcompRecFS(ztgtr,ztup,ztlo,zsctr,wzp./(zsc-ztarg)); Unum=Unum+rhohat.'*(KtargClose(LogC,CauC,ztarg,zsc,wzp,omega) ... -0.5i*omega*StargClose(LogC,ztarg,zsc,awzp,omega)); end end a1(k)=abs(Uref(k)-Unum); end % disp('List3 starts') for k=mylist3 ztarg=zg(k); Unum=0; for kk=1:npanfin myind=(kk-1)*16+1:kk*16; zsc=zfin(myind); wzp=wzpfin(myind); awzp=abs(wzp); rhohat=rhofin(myind); d=min(abs(zsc-ztarg))/sum(awzp); if d>dlim Unum=Unum+rhohat.'*(Ktarg(ztarg,zsc,wzp,omega) ... -0.5i*omega*Starg(ztarg,zsc,awzp,omega)); else a=zinterfin(kk); b=zinterfin(kk+1); zmid=b+a; zdif=b-a; cc=zdif/2; nz=nzfin(myind); ztgtr=(2*ztarg-zmid)/zdif; zsctr=(2*zsc-zmid)/zdif; LogC=LGIcompRecFAS(ztgtr,zsctr,ztarg,zsc,nz,awzp,cc); ztup=b-ztarg; ztlo=a-ztarg; CauC=M1IcompRecFS(ztgtr,ztup,ztlo,zsctr,wzp./(zsc-ztarg)); Unum=Unum+rhohat.'*(KtargClose(LogC,CauC,ztarg,zsc,wzp,omega) ... -0.5i*omega*StargClose(LogC,ztarg,zsc,awzp,omega)); end end a1(k)=abs(Uref(k)-Unum); end % a1(a1theta/2 iout=1; else sg=0.5+thetag/theta; if abs(zg)>sin(pi*sg) iout=1; end end function M1=M1Rinit(z,zp,zpp,w,wzp,N) % *** double layer potential *** M1=zeros(N); for m=1:N M1(:,m)=imag(wzp(m)./(z(m)-z)); M1(m,m)=w(m)*imag(zpp(m)/zp(m))/2; end M1=M1/pi; function S=Soperinit(LogC,z,zp,awzp,sinterdiff,omega,N) S=zeros(N); for m=1:N S(:,m)=besselh(0,omega*abs(z-z(m)))*awzp(m); end myind=find(LogC); S(myind)=S(myind)+2i/pi*(real(S(myind)).*LogC(myind)); tmp=1+2i/pi*(log(omega/2)-psi(1)); for m=1:N dsd=sinterdiff(fix((m-1)/16)+1)/2; S(m,m)=(2i/pi*(LogC(m,m)+log(dsd*abs(zp(m))))+tmp)*awzp(m); end S=1i/2*S; function K=Koperinit(LogC,z,zp,zpp,wzp,w,omega,N) K=zeros(N); for m=1:N tmp=omega*abs(z-z(m)); K(:,m)=tmp.*besselh(1,tmp).*imag(wzp(m)./(z-z(m))); K(m,m)=1i/pi*imag(zpp(m)/zp(m))*w(m); end myind=find(LogC); K(myind)=K(myind)+2i/pi*(real(K(myind)).*LogC(myind)); K=1i/2*K; function u=Starg(ztarg,z,awzp,omega) u=1i/4*besselh(0,omega*abs(ztarg-z)).*awzp; function u=Ktarg(ztarg,z,wzp,omega) tmp=omega*abs(z-ztarg); u=1i/4*tmp.*besselh(1,tmp).*imag(wzp./(ztarg-z)); function u=StargClose(LogC,ztarg,z,awzp,omega) u=besselh(0,omega*abs(ztarg-z)).*awzp; u=u+2i/pi*(real(u).*LogC); u=1i/4*u; function u=KtargClose(LogC,CauC,ztarg,z,wzp,omega) tmp=omega*abs(z-ztarg); u=tmp.*besselh(1,tmp).*imag(wzp./(ztarg-z)); u=u+2i/pi*(real(u).*LogC+CauC); u=1i/4*u; function R=initializeR(W16,T16,theta,PWbc,Pbc) myerr=1; sloc=[T16/4+0.25;T16/4+0.75;T16/2+1.5]; zloc=sloc*exp(-1i*theta/2); zploc=ones(48,1)*exp(-1i*theta/2); zloc=[conj(flipud(zloc));zloc]; zploc=[-conj(flipud(zploc));zploc]; zpploc=zeros(96,1); wloc=[W16/2;W16/4;W16/4;W16/4;W16/4;W16/2]; wzploc=wloc.*zploc; Kloc=-M1Rinit(zloc,zploc,zpploc,wloc,wzploc,96); MAT=eye(96)+Kloc; R=inv(MAT(17:80,17:80)); iter=0; while myerr>eps Rold=R; R=SchurBana(PWbc,Pbc,MAT,R); myerr=norm(R-Rold,'fro')/norm(R,'fro'); iter=iter+1; end Init_iter=iter function A=SchurBana(PW,P,K,A) starL=17:80; circL=[1:16 81:96]; starS=17:48; circS=[1:16 49:64]; VA=K(circL,starL)*A; PTA=PW'*A; PTAU=PTA*K(starL,circL); DVAUI=inv(K(circL,circL)-VA*K(starL,circL)); DVAUIVAP=DVAUI*(VA*P); A(starS,starS)=PTA*P+PTAU*DVAUIVAP; A(circS,circS)=DVAUI; A(circS,starS)=-DVAUIVAP; A(starS,circS)=-PTAU*DVAUI; function [x,it]=myGMRESR(A,R,b,n,m,tol) % *** GMRES with low-threshold stagnation control *** V=zeros(n,m+1); H=zeros(m); cs=zeros(m,1); sn=zeros(m,1); bnrm2=norm(b); V(:,1)=b/bnrm2; s=bnrm2*eye(m+1,1); for it = 1:m it1=it+1; w=A*(R*V(:,it)); for k = 1:it H(k,it)=V(:,k)'*w; w=w-H(k,it)*V(:,k); end H(it,it)=H(it,it)+1; wnrm2=norm(w); V(:,it1)=w/wnrm2; for k=1:it-1 temp = cs(k)*H(k,it)+sn(k)*H(k+1,it); H(k+1,it)=-sn(k)*H(k,it)+cs(k)*H(k+1,it); H(k,it) = temp; end [cs(it),sn(it)]=rotmat(H(it,it),wnrm2); H(it,it)= cs(it)*H(it,it)+sn(it)*wnrm2; s(it1) =-sn(it)*s(it); s(it) = cs(it)*s(it); myerr=abs(s(it1))/bnrm2; if (myerr<=tol)|(it==m) predicted_residual=myerr y=triu(H(1:it,1:it))\s(1:it); x=fliplr(V(:,1:it))*flipud(y); true_residual=norm(x+A*(R*x)-b)/bnrm2 break; end end function [c,s]=rotmat(a,b) if b==0 c=1; s=0; elseif abs(b)>abs(a) temp=a/b; s=1/sqrt(1+temp^2); c=temp*s; else temp=b/a; c=1/sqrt(1+temp^2); s=temp*c; end function zout=zfunc(s,theta) zout=sin(pi*s).*exp(1i*theta*(s-0.5)); function zpout=zpfunc(s,theta) zpout=(pi*cos(pi*s)+1i*theta*sin(pi*s)).*exp(1i*theta*(s-0.5)); function zppout=zppfunc(s,theta) zppout=(2i*pi*theta*cos(pi*s)-(theta^2+pi^2)*sin(pi*s)).* ... exp(1i*theta*(s-0.5)); function zout=zfuncloc(s,theta) zout=zfunc(s,theta); zout=[conj(flipud(zout));zout]; function zpout=zpfuncloc(s,theta) zpout=zpfunc(s,theta); zpout=[-conj(flipud(zpout));zpout]; function zppout=zppfuncloc(s,theta) zppout=zppfunc(s,theta); zppout=[conj(flipud(zppout));zppout]; function M1=LogCinit(pinterdiff,T16,W16,nseg,N,iper) % *** Corrections to Logarithmic potential log(|tau-z|) *** % *** block-tri-diagonal output *** % *** iper=0,1 (0 is open arc, 1 is closed contour) *** [TMP,~]=LGIcompRecR(0,1,T16); TMP=diadivR(TMP,W16); M1=zeros(N); if iper==1 kstart=1; kend=nseg; else kstart=2; kend=nseg-1; end % *** central blocks *** for k=1:nseg myind=k*16-15:k*16; for nj=1:16 m=myind(nj); M1(myind,m)=-log(abs(T16(nj)-T16)); M1(m,m)=0; end M1(myind,myind)=M1(myind,myind)+TMP; end % *** superdiagonal blocks (targets to the left) *** for k=kstart:nseg myinds=k*16-15:k*16; km1=mod(k-2,nseg)+1; mi=km1*16-15:km1*16; alpha=pinterdiff(km1)/pinterdiff(k); [TMP,accept]=LGIcompRecR(-1-alpha,alpha,T16); mi=mi(accept); for nj=1:16 M1(mi,myinds(nj))=-log(abs(T16(nj)+1+(1-T16(accept))*alpha)); end TMP=TMP(accept,:); M1(mi,myinds)=M1(mi,myinds)+diadivR(TMP,W16); end % *** subdiagonal blocks (targets to the right) *** for k=1:kend myinds=k*16-15:k*16; kp1=mod(k,nseg)+1; mi=kp1*16-15:kp1*16; alpha=pinterdiff(kp1)/pinterdiff(k); [TMP,accept]=LGIcompRecR(1+alpha,alpha,T16); mi=mi(accept); for nj=1:16 M1(mi,myinds(nj))=-log(abs(T16(nj)-1-(T16(accept)+1)*alpha)); end TMP=TMP(accept,:); M1(mi,myinds)=M1(mi,myinds)+diadivR(TMP,W16); end if iper==1 M1=sparse(M1); end function A=diadivR(A,d) [~,np]=size(A); for k=1:np A(:,k)=A(:,k)/d(k); end function A=diamultL(d,A) [~,np]=size(A); for k=1:np A(:,k)=d.*A(:,k); end function M1IV=M1IcompRecFS(zt,ztup,ztlo,zs,kern) % *** zt is target vector in transformed plane *** A=ones(16); for k=2:16 A(:,k)=A(:,k-1).*zs; end p=zeros(16,1); c=((1-(-1).^(1:16))./(1:16))'; p(1)=log(ztup/ztlo); for k=2:16 p(k)=zt*p(k-1)+c(k-1); end M1IV=real(((A.')\p-kern)/1i); function [LGIV,accept]=LGIcompRecFAS(ztgtr,zsctr,ztg,zsc,nz,awzp,cc); % *** absolute values, transformed ztarg and z *** A=ones(16); for k=2:16 A(:,k)=A(:,k-1).*zsctr; end p=zeros(17,1); q=zeros(16,1); c=((1-(-1).^(1:16))./(1:16))'; p(1)=log(1-ztgtr)-log(-1-ztgtr); p111=log(1-ztgtr)+log(-1-ztgtr); for k=2:17 p(k)=ztgtr*p(k-1)+c(k-1); end q(1:2:15)=(p111-p(2:2:16))./(1:2:15)'; q(2:2:16)=(p(1)-p(3:2:17))./(2:2:16)'; LGIV=imag(1i*log(cc)+cc*conj(nz).*((A.')\q./awzp)); LGIV=LGIV-log(abs(zsc-ztg)); function [LGIV,accept]=LGIcompRecR(trans,mscale,T16); % *** T is target vector, sources on canonical interval *** LGIV=zeros(16); A=ones(16); for k=2:16 A(:,k)=A(:,k-1).*T16; end accept=1:16; T=trans+mscale*T16; accept=accept(abs(T)<2); p=zeros(17,1); q=zeros(16,1); c=((1-(-1).^(1:16))./(1:16))'; for j=1:16 p(1)=log(abs((1-T(j))/(1+T(j)))); p111=log(abs(1-T(j)^2)); for k=2:17 p(k)=T(j)*p(k-1)+c(k-1); end q(1:2:15)=(p111-p(2:2:16))./(1:2:15)'; q(2:2:16)=(p(1)-p(3:2:17))./(2:2:16)'; LGIV(j,:)=q.'/A; end function [IP,IPW]=IPWinit(T16,W16) A=ones(16); AA=ones(32,16); T32=[(T16-1)/2;(T16+1)/2]; W32=[W16;W16]/2; for k=2:16 A(:,k)=A(:,k-1).*T16; AA(:,k)=AA(:,k-1).*T32; end IP=AA/A; IPW=diadivR(diamultL(W32,IP),W16); function Pbc=PbcinitBig(IP); Pbc=zeros(96,64); Pbc( 1:16, 1:16)=eye(16); Pbc(17:48,17:32)=IP; Pbc(49:96,33:64)=flipud(fliplr(Pbc(1:48,1:32))); function Pbc=Pbcinit(IP); Pbc=zeros(64,32); Pbc( 1:32, 1:16)=IP; Pbc(33:64,17:32)=flipud(fliplr(IP)); function T=Tinit16 % *** 16-point Gauss-Legendre nodes *** T=zeros(16,1); T( 1)=-0.989400934991649932596154173450332627; T( 2)=-0.944575023073232576077988415534608345; T( 3)=-0.865631202387831743880467897712393132; T( 4)=-0.755404408355003033895101194847442268; T( 5)=-0.617876244402643748446671764048791019; T( 6)=-0.458016777657227386342419442983577574; T( 7)=-0.281603550779258913230460501460496106; T( 8)=-0.095012509837637440185319335424958063; T( 9)= 0.095012509837637440185319335424958063; T(10)= 0.281603550779258913230460501460496106; T(11)= 0.458016777657227386342419442983577574; T(12)= 0.617876244402643748446671764048791019; T(13)= 0.755404408355003033895101194847442268; T(14)= 0.865631202387831743880467897712393132; T(15)= 0.944575023073232576077988415534608345; T(16)= 0.989400934991649932596154173450332627; function W=Winit16 % *** 16-point Gauss-Legendre weights *** W=zeros(16,1); W( 1)= 0.027152459411754094851780572456018104; W( 2)= 0.062253523938647892862843836994377694; W( 3)= 0.095158511682492784809925107602246226; W( 4)= 0.124628971255533872052476282192016420; W( 5)= 0.149595988816576732081501730547478549; W( 6)= 0.169156519395002538189312079030359962; W( 7)= 0.182603415044923588866763667969219939; W( 8)= 0.189450610455068496285396723208283105; W( 9)= 0.189450610455068496285396723208283105; W(10)= 0.182603415044923588866763667969219939; W(11)= 0.169156519395002538189312079030359962; W(12)= 0.149595988816576732081501730547478549; W(13)= 0.124628971255533872052476282192016420; W(14)= 0.095158511682492784809925107602246226; W(15)= 0.062253523938647892862843836994377694; W(16)= 0.027152459411754094851780572456018104;