Numerical Approximation
MCNAcourses ▸ NUMN19 – spring 2018

In short

The course starts on Tuesday, Jan 16, 2018. :

The schedule for this course can be found here

Thematic Schedule

DateLectureProtocol
2018-01-16

Lecture 1 Introduction and basic concepts, e.g. normed function spaces and setting up the approximation task

Unit01a.pdf
2018-01-18

Lecture 2 Introduction (Cont.): periodic functions, trigonometric polynomials, Weierstrass and Jackson theorems

Unit01b.pdf
2018-01-22

Lecture 3 Polynomial Interpolation

Unit02a.pdf
2018-01-25

Lecture 4 Polynomial Interpolation (Cont.)

Unit02b.pdf
2018-01-30

Lecture 5 More on divided differences, best choice of interpolation points, Tschebychev polynomials

Unit2c.pdf
2018-02-06

Lecture 6 More on optimal polynomials.

Unit2d.pdf
2018-02-13

Lecture 7 Best Approximations in normed linear spaces

Unit3a.pdf
2018-02-15

Lecture 8 Best Approximation in Euclidean spaces

Unit3b.pdf
2018-02-20

Lecture 9 Direct and Dual Characterization Theorems

Unit4a.pdf
2018-02-22

Lecture 10 Approximations in Euclidean Spaces

---
2018-02-27

Lecture 11 Construction of best approximations in Euclidean spaces, the Gramean, orthogonal polygonials

---
2018-03-01

Lecture 12 Characterization of the best approximation in the max-norm: Tschebychev approximation

---
2018-03-06

Lecture 13 The Remez algorithm for computing the best Tchebychev approximation

---
2018-03-08

Lecture 14 Weierstrass approximation theorem and its proof

---