Numerical Approximation
The exchange algorithm

Carmen Arévalo Claus Führer

Lund, Spring 2012
8.0: Exchange Algorithm – Idea

- We consider an \(n + 1 \)-dimensional Haar space \(\mathcal{A} \subset C[a, b] \).

- The exchange algorithm is an iterative procedure to compute for a given \(f \) an arbitrarily good approximation to the best approximation of \(f \) in \(\mathcal{A} \).

- It starts with a reference \(\mathcal{Z} = \{ \xi_i, i = 0, \ldots, n + 1 \} \) and constructs a sequence of references which converges to a reference \(\mathcal{Z}_\mathcal{M} = \{ \xi^*_i, i = 0, \ldots, n + 1 \} \) which fulfills the conditions of the Characterization Theorem.
8.1: Steps of the exchange algorithm

<table>
<thead>
<tr>
<th>Input: basis functions φ_i, dimension dim, function $f(x)$ and its range $[a, b]$, reference ref with $dim + 1$ distinct points.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute best approximation on the reference.</td>
</tr>
<tr>
<td>Compute reference level h.</td>
</tr>
<tr>
<td>Initialize $error_bnd = 1$.</td>
</tr>
<tr>
<td>while $error_bnd > Tol$:</td>
</tr>
<tr>
<td>exchange one reference point</td>
</tr>
<tr>
<td>Compute best approx. on new reference</td>
</tr>
<tr>
<td>compute new $error_bnd$</td>
</tr>
<tr>
<td>Increase iteration counter $iter$</td>
</tr>
<tr>
<td>$iter > max_iter$</td>
</tr>
<tr>
<td>break</td>
</tr>
</tbody>
</table>

Arévalo, Führer: Numerical Approximation, Lund University
8.2: Best approximation on a reference

Let $\phi_i, \ i = 1, \ldots, \dim$ be a basis of \mathcal{A} and let $p_Z(x) = \sum c_i \phi_i(x)$ be the best approximation of f on Z. The coefficients c_i are obtained from:

$$
\begin{pmatrix}
\phi_0(\xi_0) & \phi_0(\xi_1) & \cdots & \phi_0(\xi_n) & 1 \\
\phi_1(\xi_0) & \phi_1(\xi_1) & \cdots & \phi_1(\xi_n) & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\phi_n(\xi_0) & \phi_n(\xi_1) & \cdots & \phi_n(\xi_n) & (-1)^{n-1}
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n \\
h
\end{pmatrix}
=
\begin{pmatrix}
f(\xi_0) \\
f(\xi_1) \\
\vdots \\
f(\xi_n)
\end{pmatrix}
$$

From this the reference level error h is obtained and an error function $e(x) = f(x) - p_Z(x)$ can be defined.
8.3: Exchange a reference point

• By sampling $e(x)$ obtain ξ^*, with $|e_{\text{max}}| = |e(\xi^*)| = \max |e(x)|$.

• Find two neighboring points $\xi_i < \xi^* < \xi_{i+1}$

• If $\text{sign} e(\xi_i) = \text{sign} e_{\text{max}}$, then set $\xi_i := \xi^*$ else $\xi_{i+1} := \xi^*$

Arévalo, Führer: Numerical Approximation, Lund University
8.4: Error bound

\[|h| \leq \|f - p^*\|_\infty \leq \|f - p_Z\|_\infty \]

Computed obtained from sampling \(e(x)\)
8.5: Example 1

\[f(x) = \sin(x) \quad [a, b] = [0, \pi/2] \quad \mathcal{A} = \mathcal{P}^2 \quad \mathcal{Z}_0 = \text{linspace}(0, \pi/2, 4) \]

Difference to best approximation less then Tol = 10^{-10} reached after 3 iterations.

\[p_2(x) = -0.33142935 x^2 + 1.17488113 x - 0.01386491 \]

\[e(x) = \sin(x) - p_2(x) \]

Arévalo, Führer: Numerical Approximation, Lund University
8.6: Example 2

\[f(x) = \sin(x) \quad [a, b] = [0, \pi/2] \quad \mathcal{A} = \text{span}\{x, x^2\} \quad \mathcal{Z}_0 = \{0.5, 1, \pi/2\} \]

Difference to best approximation less then \(\text{Tol} = 10^{-10} \) reached after 4 iterations.

Arévalo, Führer: Numerical Approximation, Lund University
8.7: Example 2

Statistics:

<table>
<thead>
<tr>
<th>iteration</th>
<th>ξ_0</th>
<th>ξ_1</th>
<th>ξ_2</th>
<th>error bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.29904940</td>
<td>1.00000000</td>
<td>$\pi/2$</td>
<td>2.7×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>0.29904940</td>
<td>1.10490884</td>
<td>$\pi/2$</td>
<td>9.0×10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>0.28330996</td>
<td>1.10490884</td>
<td>$\pi/2$</td>
<td>2.0×10^{-5}</td>
</tr>
<tr>
<td>4</td>
<td>0.28330996</td>
<td>1.10490884</td>
<td>$\pi/2$</td>
<td>1.6×10^{-16}</td>
</tr>
</tbody>
</table>
Theorem. [cf. Th. 8.1]
Let \(f \in P^{n+1} \subset C[-1, 1] \) and \(\mathcal{Z} = \{ \cos \left(\frac{n+1-i}{n+1} \pi \right) : i = 0, \ldots, n+1 \} \) be a reference consisting of Chebychev points only, then \(p_{\mathcal{Z}} = p_\ast \), i.e. the best approximation of \(f \) on the reference \(\mathcal{Z} \) is the best approximation on the entire interval \([-1, 1]\) and the exchange algorithm converges in one step.

The importance of this statements becomes clear, when considering a Taylor expansion of \(f \):

\[
f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \ldots + \frac{1}{(n+1)!}f^{(n+1)}(0)x^{n+1} + \frac{1}{(n+2)!}f^{(n+2)}(0)x^{n+2} + \ldots
\]

Arévalo, Führer: Numerical Approximation, Lund University
8.9 Discrete Exchange Algorithm

Often f is not given as a function but as a set of function values on a grid

$$\mathcal{G} = \{x_1, x_2, \ldots, x_m\} \subset [a, b] \quad m > \dim(\mathcal{A}).$$

The discrete version of the exchange algorithm is a simple modification, with $\mathcal{Z} \subset \mathcal{G}$.

Theorem. [cf. Th. 8.2]

The discrete exchange algorithm converges in a finite number of steps.
9.0 Convergence of the Exchange Algorithm

We denote the reference at step k of the algorithm by $Z_k = \{\xi_0^{(k)}, \ldots, \xi_{n+1}^{(k)}\}$ and the corresponding polynomial by $p^{(k)}$.

The proof shows that the values $h(\xi_0^{(k)}, \ldots, \xi_{n+1}^{(k)}):= |h^{(k)}|$ are monotonically increasing with k.

As these values are bounded by $\|f - p^*\|_\infty$ convergence of the $|h^{(k)}|$ follows, which by a simple argument implies $\lim_{k \to \infty} p^{(k)} = p^*$.

The general assumption is that $\mathcal{A} \subset C[a, b]$ is an $n + 1$-dimensional Haar space.
9.1: Eliminating $p^{(k)}$ \hfill (1)

A first step in the convergence proof is the elimination of

$$p^{(k)} = \sum_{j=0}^{n} \lambda_j^{(k)} \phi_j$$

$$f(\xi_i^{(k)}) - \sum_{j=0}^{n} \lambda_j^{(k)} \phi_j(\xi_i^{(k)}) = (-1)^i h^{(k)} \quad i = 0, \ldots, n + 1$$

There exists σ_i (not all 0) such that

$$\sum_{i=0}^{n+1} \sigma_i \phi_j(\xi_i^{(k)}) = 0 \quad j = 0, \ldots, n$$
9.2: Eliminating $p^{(k)}$ (2)

and we get

$$\sum_{i=0}^{n+1} \sigma_i f(\xi_i^{(k)}) = \sum_{i=0}^{n+1} \sigma_i (-1)^i h^{(k)}$$

Theorem. [cf. Th. 9.1]

Let $\{\sigma_i, i = 0, \ldots, n + 1\}$ be a set of real numbers, which are not all 0 and for which

$$\sum_{i=0}^{n+1} \sigma_i p(\xi_i) = 0 \quad \forall p \in A$$

holds, then

$$\sigma_i \neq 0 \quad \sigma_i = -\sigma_{i+1}$$