KKKA10 2012 tenta Carmen Arevalo
Contents
close all
Uppgift 1
The method is the trapezoidal rule (note the factor 2 in the formula)
type qmetod.m f=@(t)1./(1+t.^2).^2; format long I=qmetod(f,0,1,100) % Comparison with Simpson with small tolerance S=quad(f,0,1,1e-15)
function I=qmetod(f,a,b,stegtal) % tenta KKKA10 2012-5-23 x=a; h=(b-a)/stegtal; s=f(a); for j = 1:stegtal-1 x = x+h; s = s+2*f(x); end s = s+f(b); I = h*s/2; I = 0.642694915052892 S = 0.642699081698724
Solution: 0.6427
Uppgift 2
format short mass=[0.16;0.3;2;45;70;400]; met=[0.97;1.45;4.8;50;82;270]; figure plot(mass,met,'o') xlabel('mass') ylabel('metabolism')
With basic fitting I see a quadratic polynomial fits best
The coefficients of
are:
p=polyfit(mass,met,2)
p = -0.0014 1.2212 1.0518
mx=linspace(0.16,400); my=polyval(p,mx); plot(mass,met,'o',mx,my) legend('data points','met(mass)','Location','best')
Uppgift 3
m=2;n=1;alfa=2;beta=0.27;delta=0.25;RQ=1.5;
A=[0 0 1 0 1;
0 3 -alfa -2 0;
2 0 -beta -1 -2;
0 1 -delta 0 0;
RQ 0 0 0 -1];
b=[1;-m;-n;0;0];
The constants, ordered a, b, c, d, e, are
constants=A\b
constants =
0.2316
0.1631
0.6525
0.5922
0.3475