KETA01 Tenta 2011-03-10 Carmen Arevalo
Contents
format short g
Uppgift 1
A=[ 1 0 -1 0 -1 -1 0 0
4 0 -2 -2 -2 -4 0 0
1 2*.21 -1 -1 -2 -1 0 -2
0 .79 0 0 0 0 -1 0
1-.33 0 0 0 0 -1 0 0
-.97 0 1 0 0 .97 0 0
0 0 1 0 1 1 1 -(1-.138)/.138
1 0 0 0 0 0 0 0 ]
b=[0 0 0 0 0 0 0 100]'
x=A\b
factor=(sum(x(3:8))-x(4))/100;
For=x(3)/factor
Myr=x(5)/factor
Met=x(6)/factor
Kva=x(7)/factor
Syr=x(8)/factor
A =
Columns 1 through 7
1 0 -1 0 -1 -1 0
4 0 -2 -2 -2 -4 0
1 0.42 -1 -1 -2 -1 0
0 0.79 0 0 0 0 -1
0.67 0 0 0 0 -1 0
-0.97 0 1 0 0 0.97 0
0 0 1 0 1 1 1
1 0 0 0 0 0 0
Column 8
0
0
-2
0
0
0
-6.2464
0
b =
0
0
0
0
0
0
0
100
x =
100
395.13
32.01
33
0.99
67
312.16
65.983
For =
6.6947
Myr =
0.20705
Met =
14.013
Kva =
65.286
Syr =
13.8
Uppgift 2
f=@(x)x.^3-exp(x)-10*x-7; xp=linspace(-4,4); yp=f(xp); figure(1) plot(xp,yp) grid
There are 2 roots, near -3 and -1
x1=fzero(f,-3) x2=fzero(f,-1) a=quad(f,x1,x2)
x1 =
-2.7209
x2 =
-0.79547
a =
6.387
Uppgift 3
dat=importdata('production_cost_data.txt'); run=dat.data(:,1); cost=dat.data(:,2); figure(2) plot(run,cost,'o')
Using Basic Fitting we see that a straight line is the best choice because taking a higher degree polynomial does not reduce the residual substancially
The data is fitted by y = p(1) x + p(2), where x is the run and y is the cost.
p=polyfit(run,cost,1) runp=linspace(min(run),max(run)); costp=polyval(p,runp); figure(3) plot(run,cost,'o',runp,costp) legend('data','fit','Location','best') xlabel('run') ylabel('cost')
p =
8.7116 4016.8