Chapter 4: contents

- Finite difference approximation of derivatives
- Finite difference methods for the 2p-BVP
- Newton’s method
- Sturm–Liouville problems
- Toeplitz matrices
- Convergence: Lax’ equivalence theorem
- Differential operators
- From finite differences to finite elements
1. Approximation of derivatives \((y' = \frac{dy}{dx})\)

First order approximations

Forward difference

\[
y'(x) = \frac{y(x + \Delta x) - y(x)}{\Delta x} + O(\Delta x)
\]

Backward difference

\[
y'(x) = \frac{y(x) - y(x - \Delta x)}{\Delta x} + O(\Delta x)
\]
Approximation of derivatives . . .

Second order approximations

Symmetric difference quotients

\[y'(x) = \frac{y(x + \Delta x) - y(x - \Delta x)}{2\Delta x} + O(\Delta x^2) \]

\[y''(x) = \frac{y(x + \Delta x) - 2y(x) + y(x - \Delta x)}{\Delta x^2} + O(\Delta x^2) \]
Derivatives → finite differences → matrices

Matrix representation of *forward difference*

\[
y'(x) = \frac{y(x + \Delta x) - y(x)}{\Delta x} + O(\Delta x)
\]

Introduce vectors \(y = \{y(x_i)\} \) and \(y' = \{y'(x_i)\} \):

\[
\begin{pmatrix}
y'_0 \\
y'_1 \\
\vdots \\
y'_N
\end{pmatrix}
\approx \frac{1}{\Delta x}
\begin{pmatrix}
-1 & 1 \\
-1 & 1 \\
\vdots & \vdots \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{N+1}
\end{pmatrix}
\]
Derivatives . . . matrices

Note Forward difference $\sim (N + 1) \times (N + 2)$ matrix

$$\begin{pmatrix}
y'_0 \\
y'_1 \\
\vdots \\
y'_N
\end{pmatrix} \approx \frac{1}{\Delta x}
\begin{pmatrix}
-1 & 1 & & & \\
-1 & 1 & & & \\
& \ddots & \ddots & & \\
& & -1 & 1 & \\
\end{pmatrix}
\begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{N+1}
\end{pmatrix}$$

Nullspace spanned by $y = (1 \ 1 \ 1 \ldots 1)^T$

Compare nullspace of $d/dx : y = 1 \Rightarrow y' \equiv 0$

Analogous result for backward difference
Central difference

\[y'(x) \approx \frac{y(x + \Delta x) - y(x - \Delta x)}{2\Delta x} \]

Matrix representation

\[
\begin{pmatrix}
 y'_1 \\
 y'_2 \\
 \vdots \\
 y'_{N + 1}
\end{pmatrix}
\approx
\frac{1}{2\Delta x}
\begin{pmatrix}
 -1 & 0 & 1 \\
 \cdots & \cdots & \cdots \\
 -1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{N + 1}
\end{pmatrix}
\]
Derivatives . . . matrices

Note \(N \times (N + 2) \) matrix

\[
\begin{pmatrix}
 y'_1 \\
y'_2 \\
 \vdots \\
y'_N
\end{pmatrix} \approx \frac{1}{2\Delta x} \begin{pmatrix}
-1 & 0 & 1 \\
 & \ddots & \ddots & \ddots \\
 & & -1 & 0 & 1
\end{pmatrix} \begin{pmatrix}
y_0 \\
y_1 \\
 \vdots \\
y_{N+1}
\end{pmatrix}
\]

Nullspace is two-dimensional:
\[
\bar{y} = (1 \ 1 \ 1 \ldots 1)^T \quad \text{and} \quad \tilde{y} = (1 \ -1 \ 1 \ -1 \ldots 1)^T
\]
Derivatives . . . matrices

“False” nullspace \(\tilde{y} = (1 \ -1 \ 1 \ -1 \ldots 1)^T \) does not converge to a \(C^1 \) function!

Compare difference equation \(y_{n+1} - y_{n-1} = 0 \), with characteristic equation

\[z^2 - 1 = 0 \quad \Rightarrow \quad z = \pm 1 \]

and solutions \(\bar{y}_n = 1 \) and \(\tilde{y}_n = (-1)^n \)
2nd order derivatives → matrices

Central difference

\[y''(x) \approx \frac{y(x + \Delta x) - 2y(x) + y(x - \Delta x)}{\Delta x^2} \]

\[
\begin{pmatrix}
 y''_1 \\
 y''_2 \\
 \vdots \\
 y''_N
\end{pmatrix}
\approx \frac{1}{\Delta x^2}
\begin{pmatrix}
 1 & -2 & 1 & & & \\
 & \ddots & \ddots & \ddots & & \\
 & & 1 & -2 & 1 & \\
\end{pmatrix}
\begin{pmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{N+1}
\end{pmatrix}
\]

Note \(N \times (N + 2) \) matrix with nullspace \(\bar{y} = (1 \ 1 \ldots 1)^T \)
and \(\hat{y} = (0 \ 1 \ 2 \ 3 \ldots N + 1)^T \)
2nd order derivatives . . .

Nullspace of \(\frac{d^2}{dx^2} \):

\(y = 1 \) and \(y = x \) both have \(y'' \equiv 0 \)

Compare difference equation \(y_{n+1} - 2y_n + y_{n-1} = 0 \), with characteristic equation

\[
z^2 - 2z + 1 = 0 \quad \Rightarrow \quad z = 1, 1
\]

and solutions \(\bar{y}_n = 1 \) and \(\hat{y}_n = n \), respectively
Numerical differentiation

First and second derivatives of $y = \sin \pi x$

Data function $\sin(\pi x)$ and sampled points for $h=1/6$

First derivative, fwd diff (+), bwd diff (x), symmetric diff (o)

Second derivative, symmetric 2nd diff (o)
2. Finite difference methods for 2p-BVP

Consider simplest problem

\[y'' = f(x, y) \]

\[y(0) = \alpha; \quad y(1) = \beta \]

Introduce equidistant grid with \(\Delta x = 1/(N + 1) \)

Discretization

\[\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} = f(x_i, y_i) \]

\[y_0 = \alpha; \quad y_{N+1} = \beta \]
Discrete 2pBVP

\[
\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} = f(x_i, y_i) \quad i = 1 : N
\]

\[y_0 = \alpha; \quad y_{N+1} = \beta\]

This is a (nonlinear) system of equations \(F(y) = 0 \) for the \(N \) unknowns \(y_1, y_2, \ldots, y_N \)

Solve \(F(y) = 0 \) using Newton’s method
Equation system $F(y) = 0$

$$F_1(y) = \frac{\alpha - 2y_1 + y_2}{\Delta x^2} - f(x_1, y_1)$$

$$F_i(y) = \frac{y_{i-1} - 2y_i + y_{i+1}}{\Delta x^2} - f(x_i, y_i)$$

$$F_N(y) = \frac{y_{N-1} - 2y_N + \beta}{\Delta x^2} - f(x_N, y_N)$$

Note how *boundary values* enter
Jacobian matrix

\[F'(y) = \text{tridiag} \left(\frac{1}{\Delta x^2}, -\frac{2}{\Delta x^2} + \frac{\partial f}{\partial y_i}, \frac{1}{\Delta x^2} \right) \]

is tridiagonal, and

- Super- and subdiagonal elements \(\frac{1}{\Delta x^2} \)
- Diagonal elements \(-\frac{2}{\Delta x^2} - \frac{\partial f}{\partial y_i} \)
- Sparse \(LU \) decomposition runs in \(O(N) \) time
- Solution effort moderate even when \(N \) is large
3. Newton’s method (recap)

Let $y^{(k)}$ be an approximation to the root y

Taylor series expansion

$$0 = F(y) \approx F(y^{(k)}) + F'(y^{(k)}) \cdot (y - y^{(k)})$$

Define $y^{(k+1)}$ by

$$0 =: F(y^{(k)}) + F'(y^{(k)}) \cdot (y^{(k+1)} - y^{(k)})$$
Newton’s method for $F(y) = 0$

Newton iteration

1. Compute Jacobian $F'(y^{(k)}) = \{ \partial F_i / \partial y_j \}$
2. Factorize Jacobian matrix $F'(y^{(k)}) \rightarrow LU$
3. Solve linear system $LU \delta y^{(k)} = -F(y^{(k)})$
4. Update $y^{(k+1)} := y^{(k)} + \delta y^{(k)}$

Newton’s method is quadratically convergent
Quadratic convergence

Newton’s method converges if

1. $\| F'(y^{(k)})^{-1} \| \leq C'$
2. $\| F''(y^{(k)}) \| \leq C''$
3. $\| y^{(0)} - y \| < \varepsilon$ (close enough starting value)

Then convergence is quadratic

$$\| y^{(k+1)} - y \| \leq C \cdot \| y^{(k)} - y \|^2$$
Boundary Conditions come in many shapes

- **“Dirichlet”** boundary conditions
 \[y(0) = \alpha \] straightforward to implement

- **“Neumann”** boundary conditions
 \[y'(0) = \gamma \] requires special attention

- **“Robin”** conditions
 \[y(0) + c \cdot y'(0) = \kappa \] requires same attention

for the method’s *convergence order* to be preserved
Neumann problem

Example

\[y'' = f(x, y) \]

\[y(0) = \alpha; \quad y'(1) = \beta \]

Equidistant grid, with \(x = 1 \) between grid points!

\[x_N + \Delta x/2 = 1 = x_{N+1} - \Delta x/2 \]

\[y'(1) = \beta \quad \rightarrow \quad \frac{y_{N+1} - y_N}{\Delta x} = \beta \]

\(\Rightarrow \) \(y_{N+1} := \beta \Delta x + y_N \) is of second order at \(x = 1 \)
Robin problem

Example

\[y'' = f(x, y) \]

\[y(0) = \alpha; \quad y(1) + c \cdot y'(1) = \kappa \]

Equidistant grid, with \(x = 1 \) between grid points!

\[y(1) + c y'(1) = \kappa \quad \rightarrow \quad \frac{y_{N+1} + y_N}{2} + c \frac{y_{N+1} - y_N}{\Delta x} = \kappa \]

\[\Rightarrow \quad y_{N+1} := \frac{(2c - \Delta x)y_N + 2\kappa \Delta x}{2c + \Delta x} \]
4. Sturm–Liouville eigenvalue problems

Diffusion problem

\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(p(x) \frac{\partial u}{\partial x} \right) = 0 ; \quad y(a) = 0 , \quad y(b) = 0
\]

Separation of variables (one space dimension)

\[
u(t, x) := y(x) \cdot v(t) \quad \Rightarrow \quad \frac{\dot{v}}{v} = \frac{(p(x) y'(x))'}{y} =: \lambda
\]

Sturm–Liouville eigenvalue problem

\[
\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) - \lambda y = 0 ; \quad y(a) = 0 , \quad y(b) = 0
\]
Sturm–Liouville eigenvalue problem ...

Wave equation

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}; \quad y(a) = \ldots , \quad y(b) = \ldots \]

Express solution as \(u(t, x) = y(x) e^{i\omega t} \Rightarrow \)

\[-\omega^2 y = c^2 y'' \]

Sturm–Liouville eigenvalue problem

\[y'' = \lambda y \quad \text{with} \quad \lambda = -\omega^2 / c^2 \]
Sturm–Liouville eigenvalue problem...

Find eigenvalues λ and eigenfunctions $y(x)$ with

$$\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) = \lambda y ; \quad y(a) = 0 , \ y(b) = 0$$

Discretization Matrix eigenvalue problem

$$T_{\Delta x} y = \lambda_{\Delta x} y$$

Note Analytic eigenvalue problem converts to algebraic!
Sturm–Liouville problem. Discretization

\[
p_{i-1/2}y_{i-1} - \left(p_{i-1/2} + p_{i+1/2} \right) y_i + p_{i+1/2}y_{i+1} = \Delta x^2 \lambda_{\Delta x} y_i
\]

\[
y_0 = y_{N+1} = 0
\]

Symmetric tridiagonal $N \times N$ eigenvalue problem

\[
T_{\Delta x} y = \lambda_{\Delta x} y
\]

There are N eigenvalues $\lambda_{\Delta x,n} = \lambda_n + O(\Delta x^2)$
Sturm–Liouville problem. Simple example

Example

\[y'' = \lambda y \]
\[y(0) = y(1) = 0 \]

Analytic solution

\[y(x) = A \sin \sqrt{-\lambda} x + B \cos \sqrt{-\lambda} x \]

Boundary values \(\Rightarrow \) \(B = 0 \) and

\[A \sin \sqrt{-\lambda} = 0 \]

\[A \neq 0 \quad \Rightarrow \quad \sqrt{-\lambda} = n\pi \quad n = 1, 2, \ldots \]
Simple Sturm–Liouville example . . .

\[y'' = \lambda y \]
\[y(0) = y(1) = 0 \]

Eigenvalues \[\lambda_n = -n^2 \pi^2, \quad n = 1, 2, \ldots \]

Eigenfunctions \[y_n(x) = \sin n\pi x \]
Discrete Sturm–Liouville. Same example

Discretization of $y'' = \lambda y$ with BVs \Rightarrow

$$\frac{y_{i-1} - 2y_i + y_{i+1}}{\Delta x^2} = \lambda \Delta x y_i$$

$y_0 = y_{N+1} = 0$; $\Delta x = 1/(N + 1)$

Tridiagonal $N \times N$ matrix formulation

$$\frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots \\ 1 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} = \lambda \Delta x \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
Discrete Sturm–Liouville . . .

Algebraic eigenvalue problem

\[T_{\Delta x} y = \lambda_{\Delta x} y \]

Smallest eigenvalue

\[\lambda_{\Delta x} = -\pi^2 + O(\Delta x^2) \]

The first few eigenvalues are well approximated, but the approximation gradually gets worse.
Discrete Sturm–Liouville. Computation

First three \((N = 19)\) eigenvectors of \(T_{\Delta x}\)
Discrete Sturm–Liouville. Eigenvalues $N = 19$

Discrete eigenvalues $\lambda_{\Delta x}$:
-9.8493, -39.1548, -87.1948

Exact eigenvalues λ:
-9.8696, -39.4784, -88.8264

Relative errors:
0.21%, 0.82%, 1.63%

- Lowest eigenvalues are more accurate
- Good approximations for \sqrt{N} first eigenvalues

(Here approximately first 4 – 5 modes)
Discrete Sturm–Liouville. High modes

Eigenvectors 7, 13, 19 ($N = 19$) of $T_{\Delta x}$
Discrete Sturm–Liouville. High modes

Eigenvectors 7, 13, 19 \((N = 19)\) of \(T_{\Delta x}\)
5. Toeplitz matrices

A **Toeplitz matrix** is constant along diagonals

Example (symmetric)

\[T_{\Delta x} = \frac{1}{\Delta x^2} \begin{pmatrix}
-2 & 1 & 0 & \ldots \\
1 & -2 & 1 \\
1 & -2 & 1 \\
\vdots \\
\vdots & 0 & 1 & -2
\end{pmatrix} \]
Toeplitz matrices . . .

Much is known about Toeplitz matrices

- Eigenvalues
- Norms
- Inverses
- etc.

They can be generated in MATLAB using the built-in function \texttt{toeplitz}
Eigenvalues of Toeplitz matrices

Example Solve the eigenvalue problem $Ty = \lambda y$ for

$$T = \begin{pmatrix}
-2 & 1 & 0 & \ldots \\
1 & -2 & 1 & \\
1 & -2 & 1 & \\
\vdots & \vdots & \ddots & \\
\ldots & 0 & 1 & -2
\end{pmatrix}$$

Note $\lambda[T] = -2 + \lambda[S]$
Eigenvalues . . .

. . . the problem gets simplified

\[
S y = \begin{pmatrix}
0 & 1 & 0 & \ldots \\
1 & 0 & 1 \\
1 & 0 & 1 \\
\vdots & & & & 1 \\
\ldots & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{pmatrix} = \lambda y
\]

Find the eigenvalues of \(S \)!
Eigenvalues . . . and difference equations!

Consider the \(n^{\text{th}} \) equation of \(Sy = \lambda y \):

\[
y_{n+1} + y_{n-1} = \lambda y_n
\]

Linear difference equation with boundary values

\[
y_0 = 0; \quad y_{N+1} = 0
\]

Characteristic equation

\[
z^2 - \lambda z + 1 = 0
\]
Roots of \(z^2 - \lambda z + 1 = 0 \) are \(z \) and \(1/z \) (product 1)

General solution \(y_n = \alpha z^n + \beta z^{-n} \)
Eigenvalues . . . characteristic equation

Roots of $z^2 - \lambda z + 1 = 0$ are z and $1/z$ (product 1)

General solution $y_n = \alpha z^n + \beta z^{-n}$

Boundary condition $y_0 = 0 = \alpha + \beta$ \Rightarrow

Solution $y_n = \alpha(z^n - z^{-n})$
Eigenvalues ... characteristic equation

Roots of \(z^2 - \lambda z + 1 = 0 \) are \(z \) and \(1/z \) (product 1)

General solution \(y_n = \alpha z^n + \beta z^{-n} \)

Boundary condition \(y_0 = 0 = \alpha + \beta \) \(\Rightarrow \)

Solution \(y_n = \alpha (z^n - z^{-n}) \)

Boundary condition
\[
y_{N+1} = 0 = \alpha(z^{N+1} - z^{-(N+1)}) \quad \Rightarrow \quad z^{2(N+1)} = 1
\]
Eigenvalues ... characteristic equation

Roots of \(z^2 - \lambda z + 1 = 0 \) are \(z \) and \(1/z \) (product 1)

General solution \(y_n = \alpha z^n + \beta z^{-n} \)

Boundary condition \(y_0 = 0 = \alpha + \beta \) \(\Rightarrow \)

Solution \(y_n = \alpha(z^n - z^{-n}) \)

Boundary condition
\(y_{N+1} = 0 = \alpha(z^{N+1} - z^{-(N+1)}) \) \(\Rightarrow \) \(z^{2(N+1)} = 1 \)

Roots \(z_k = \exp\left(\frac{k\pi i}{N + 1}\right) \quad k = 1 : N \)
Eigenvalues . . .

Sum of the roots of \(z^2 - \lambda z + 1 = 0 \) are

\[
\lambda_k = z_k + 1/z_k \quad \Rightarrow
\]

\[
\lambda_k[S] = \exp\left(\frac{k\pi i}{N + 1}\right) + \exp\left(-\frac{k\pi i}{N + 1}\right) = 2 \cos \frac{k\pi}{N + 1}
\]
Eigenvalues . . .

Sum of the roots of $z^2 - \lambda z + 1 = 0$ are

$$\lambda_k = z_k + 1/z_k \implies$$

$$\lambda_k[S] = \exp \left(\frac{k\pi i}{N + 1} \right) + \exp \left(-\frac{k\pi i}{N + 1} \right) = 2 \cos \frac{k\pi}{N + 1}$$

Hence

$$\lambda_k[T] = -2 + 2 \cos \frac{k\pi}{N + 1} = -4 \sin^2 \frac{k\pi}{2(N + 1)}$$
Eigenvalues of Toeplitz matrices

Theorem The $N \times N$ Toeplitz matrix

$$T = \begin{pmatrix}
-2 & 1 & 0 & \ldots \\
1 & -2 & 1 & \\
1 & -2 & 1 & \\
\ldots & & & \\
\ldots & 0 & 1 & -2
\end{pmatrix}$$

has N real eigenvalues ($k = 1 : N$)

$$\lambda_k[T] = -4 \sin^2 \frac{k\pi}{2(N+1)} \in (-4, 0)$$
Consider the operator approximation

\[
\frac{d^2}{dx^2} \leftrightarrow \frac{1}{\Delta x^2} T
\]

on \(x \in [0, 1] \), with \(\Delta x = 1/(N + 1) \)

Corollary \(\text{The eigenvalues of } T_{\Delta x} := T/\Delta x^2 \text{ are} \)

\[
\lambda_k[T_{\Delta x}] = -4(N + 1)^2 \sin^2 \frac{k\pi}{2(N + 1)} \approx -k^2 \pi^2
\]

for \(k \ll N \)
What are the eigenvalues of d^2/dx^2 on $[0, 1]$?

Consider the Sturm–Liouville problem

$$u'' = \lambda u \; ; \; u(0) = u(1) = 0$$

Solutions

$$u(x) = A \sin \sqrt{-\lambda} x + B \cos \sqrt{-\lambda} x$$

Boundary conditions

$$B = 0 \; \text{and} \; A \sin \sqrt{-\lambda} = 0$$
What are the eigenvalues of d^2/dx^2 on $[0, 1]$?

Consider the Sturm–Liouville problem

$$u'' = \lambda u ; \quad u(0) = u(1) = 0$$

Solutions $u(x) = A \sin \sqrt{-\lambda} x + B \cos \sqrt{-\lambda} x$

Boundary conditions $B = 0$ and $A \sin \sqrt{-\lambda} = 0$

Theorem *The eigenvalues are* $\lambda_k[d^2/dx^2] = -k^2 \pi^2$

Note $k \in \mathbb{Z}^+$
What are the norms of T?

Lemma For a symmetric matrix A, it holds
\[\|A\|_2 = \max_k |\lambda_k| \]
What are the norms of T?

Lemma For a symmetric matrix A, it holds

$$\|A\|_2 = \max_k |\lambda_k|$$

Lemma For a symmetric matrix A, it holds

$$\mu_2[A] = \max_k \lambda_k$$

(Both results actually hold for normal matrices)
Proofs: Norm

Definition

\[\| A \|_2^2 = \max_{x^T x \neq 0} \frac{x^T A^T A x}{x^T x} \]

Find stationary points of the Rayleigh quotient of \(A^T A \), given by

\[\rho(x) = \frac{x^T A^T A x}{x^T x} \]

\[\text{grad}_x \rho(x) = \frac{2 A^T A x x^T x - 2 x x^T A^T A x}{(x^T x)^2} : = 0 \]

\[A^T A x = \rho(x) x \quad \Rightarrow \quad A^2 x = \rho(x) x \]
Proofs: Norm . . .

So $\rho(x) = \lambda^2$, where λ is an eigenvalue of A

Therefore $\|A\|_2^2 = \max |\lambda[A]|^2$ or

$$\|A\|_2 = \max |\lambda[A]|$$

when A is *symmetric*
Proofs: Logarithmic norm

Definition

\[\mu_2[A] = \max_{x^T x \neq 0} \frac{x^T Ax}{x^T x} \]

Find stationary points of the Rayleigh quotient of \(A \), given by

\[\rho(x) = \frac{x^T Ax}{x^T x} \]

\[\nabla_x \rho(x) = \frac{[(A + A^T)xx^T x - 2xx^T Ax]}{(x^T x)^2} : = 0 \]

\[\frac{1}{2}(A + A^T)x = \rho(x)x \quad \Rightarrow \quad Ax = \rho(x)x \]
Proofs: Logarithmic norm . . .

So \(\rho(x) = \lambda \), where \(\lambda \) is an eigenvalue of \(A \).

Therefore \(\mu_2[A] = \max \lambda[A] \) when \(A \) is \textit{symmetric}.

For symmetric matrices we have proved

\[
\|A\|_2 = \max_k |\lambda_k| \quad \mu_2[A] = \max_k \lambda_k
\]
What are the norms of $T_{\Delta x}$?

Eigenvalues of $T_{\Delta x} = T / \Delta x^2$ are

$$\lambda_k[T_{\Delta x}] = -4(N + 1)^2 \sin^2 \frac{k\pi}{2(N + 1)}$$

So $\|T_{\Delta x}\|_2 = |\lambda_N|$ and $\mu_2[T_{\Delta x}] = \lambda_1$

Theorem The Euclidean norms of $T_{\Delta x}$ are

$$\|T_{\Delta x}\|_2 \approx \frac{4}{\Delta x^2} \quad \mu_2[T_{\Delta x}] \approx -\pi^2$$
The norm of $T_{\Delta x}^{-1}$

Recall that $\mu[A] < 0 \implies \|A^{-1}\| \leq -1/\mu[A]$

Approximate $y'' = f(x)$ with $y(0) = y(1) = 0$ by

$$T_{\Delta x}u = q$$

Note that $\mu_2[T_{\Delta x}] \approx -\pi^2$ then implies that this problem has a unique solution, as

$$\|T_{\Delta x}^{-1}\|_2 \approx \frac{1}{\pi^2}$$
What norms to use. RMS and Euclidean norms

The norm of a function is measured in the L^2 norm

$$\|l\|_2^2 = \int_0^1 l(x)^2 \, dx$$

A corresponding discrete function (vector) is then measured in the root mean square (RMS) norm

$$\|l(x)\|_{\Delta x}^2 = \sum_{i=1}^{N} l(x_i)^2 \Delta x = \frac{1}{N+1} \sum_{i=1}^{N} l(x_i)^2 = \frac{1}{N+1} \|l(x)\|_2^2$$

Important! Note that $\|T_{\Delta x}^{-1}\|_{\Delta x} \equiv \|T_{\Delta x}^{-1}\|_2$
Solution and error bounds

Approximate $y'' = f(x)$ with $y(0) = y(1) = 0$ by

$$T_{\Delta x}u = q$$

Convergence analysis will show

Theorem $\mu_2[T_{\Delta x}] \approx -\pi^2$ implies a *unique solution* with

$$\|u\|_{\Delta x} \lesssim \frac{\|q\|_{\Delta x}}{\pi^2} \quad \|e(x)\|_{\Delta x} \lesssim \frac{\|l(x)\|_{\Delta x}}{\pi^2}$$

Solution–data \quad Global–local error
6. Convergence of finite difference methods

Basic problem

\[y'' = f(x, y) \]
\[y(0) = \alpha; \quad y(1) = \beta \]

Equidistant discretization

\[\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} = f(x_i, y_i) \]
\[y_0 = \alpha; \quad y_{N+1} = \beta \]
Error definitions

Local error

Insert exact solution $y(x)$ into discretization:

$$\frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{\Delta x^2} = f(x_i, y(x_i)) - l(x_i)$$

Taylor expansion, using $f(x_i, y(x_i)) = y''(x_i)$:

$$-l(x_i) = 2 \left(\frac{\Delta x^2}{4!} y^{(4)}(x_i) + \frac{\Delta x^4}{6!} y^{(6)}(x_i) + \ldots \right)$$

Only even powers of Δx due to symmetry
Global error

Definition The global error is defined
\[e(x_i) = y_i - y(x_i) \]

Convergence Will show that \(e(x) \to 0 \) as \(\Delta x \to 0 \), or more specifically

\[e(x_i) = c_1 \Delta x^2 + c_2 \Delta x^4 + \ldots \]

Again only *even powers* due to symmetry
Convergence

Assume f is a linear function, ⇒ F is linear ⇒

$$F(y) = 0 \iff T_{\Delta x} y = q$$

with $T_{\Delta x}$ tridiagonal. Then

- **Numerical solution** $T_{\Delta x} y = q$
- **Exact solution** $T_{\Delta x} y(x) = q - l(x)$
Convergence . . .

Solve \(T_{\Delta x} y = q \) formally to get

Numerically \[y = T_{\Delta x}^{-1} \cdot q \]

Exact \[y(x) = T_{\Delta x}^{-1} \cdot (q - l(x)) \]

Global error \[e(x) = T_{\Delta x}^{-1} \cdot l(x) \]

Error bound \[\| e(x) \|_{\Delta x} \leq \| T_{\Delta x}^{-1} \|_2 \cdot \| l(x) \|_{\Delta x} \]
Matching norms: RMS and Euclidean norms

Note how root mean square (RMS) norm of vector

\[\| l(x) \|_{\Delta x}^2 = \sum_{1}^{N} l(x_i)^2 \Delta x = \frac{1}{N+1} \sum_{1}^{N} l(x_i)^2 = \frac{1}{N+1} \| l(x) \|_2^2 \]

is matched to the Euclidean matrix norm, by way of

\[\| T_{\Delta x}^{-1} \|_{\Delta x} \equiv \| T_{\Delta x}^{-1} \|_2 \]

(Prove this relation!)
Recall $\mu_2[T_{\Delta x}] \approx -\pi^2 \Rightarrow \left\| T_{\Delta x}^{-1} \right\|_2 \lesssim 1/\pi^2 \ (\Delta x \to 0)$

Since $\left\| e(x) \right\|_{\Delta x} \leq \left\| T_{\Delta x}^{-1} \right\|_2 \cdot \left\| l(x) \right\|_{\Delta x}$ and
$\left\| l \right\|_{\Delta x} = \gamma_1 \Delta x^2 + \gamma_2 \Delta x^4 \ldots \text{ we have}$

$$\left\| e \right\|_{\Delta x} \leq C \cdot \left\| l \right\|_{\Delta x} = c_1 \Delta x^2 + c_2 \Delta x^4 + \ldots$$

... and we have convergence as $\Delta x \to 0!$:)
Convergence: Lax’ principle

Conclusion

Consistency: local error \(l \to 0 \) as \(\Delta x \to 0 \)

Stability: \(\| T_{\Delta x}^{-1} \|_2 \leq C \) as \(\Delta x \to 0 \)

Convergence: global error \(e \to 0 \) as \(\Delta x \to 0 \)

Theorem (Lax’ Principle)

Consistency + Stability \(\Rightarrow \) Convergence

(“Fundamental theorem of numerical analysis”)
7. Differential operators. Integration by parts

Logarithmic norm of matrix:

\[\mu_2[A] = \max_{x \neq 0} \frac{x^T Ax}{x^T x} \quad \Rightarrow \quad x^T Ax \leq \mu_2[A] \cdot x^T x \]

For \(d^2/dx^2 \), introduce the inner product

\[\langle u, v \rangle = \int_0^1 \bar{u}(x)v(x) \, dx \quad \Rightarrow \quad \| u \|_2^2 = \langle u, u \rangle \]
The logarithmic norm of d^2/dx^2

Can we find a constant $\mu_2[d^2/dx^2]$ such that

$$\langle u, u'' \rangle \leq \mu_2[d^2/dx^2] \cdot \| u \|_2^2$$

for all functions $u \in C^2_0[0, 1]$?

Yes and $\mu_2[d^2/dx^2] = -\pi^2$
Integration by parts

\[\int_0^1 uv' \, dx = [uv]^1_0 - \int_0^1 u'v \, dx \]

Because \(u(0) = u(1) = 0 \), this can be written

\[\langle u, v' \rangle = -\langle u', v \rangle \]

Apply to \(d^2/dx^2 \) \(\Rightarrow \)

\[\langle u, u'' \rangle = -\langle u', u' \rangle = -\|u'\|_2^2 \]
Sobolev’s lemma

Lemma For all functions u with $u(0) = u(1) = 0$ it holds that

$$\|u'\|_2 \geq \pi \|u\|_2$$

Proof Fourier analysis (Parseval’s theorem)

$$u = \sqrt{2} \sum_{k=1}^{\infty} c_k \sin k\pi x \quad \Rightarrow \quad u' = \pi \sqrt{2} \sum_{k=1}^{\infty} k c_k \cos k\pi x$$

implies $\|u'\|_2 \geq \pi \|u\|_2$
Logarithmic norm of $d^2/{dx}^2$ on $[0, 1]$

$$\langle u, u'' \rangle = -\langle u', u' \rangle = -\|u'\|_2^2 \leq -\pi^2\|u\|_2^2$$

Theorem The logarithmic norm of $d^2/{dx}^2$ on $C_0^2[0, 1]$ is

$$\mu_2[d^2/{dx}^2] = -\pi^2$$

Corollary The 2pBVP $u'' = f(x); \; u(0) = u(1) = 0$; has a unique solution with $\|u\|_2 \leq \|f\|_2/\pi^2$
Self-adjoint operators

Definition

\[\langle v, Au \rangle = \langle A^* v, u \rangle \]

defines the adjoint operator \(A^* \)

Example For vectors and matrices

\[\langle v, Au \rangle = v^T A u = (A^T v)^T u = \langle A^* v, u \rangle \]

\(A^T \) is the adjoint of \(A \)

A matrix is self-adjoint ("symmetric") if \(A = A^T \)
Self-adjoint differential operators . . .

Example \(\frac{d^2}{dx^2} \) on \(C^2_0[0, 1] \)

Integrate by parts

\[
\langle v, u'' \rangle = -\langle v', u' \rangle = \langle v'', u \rangle
\]

So \(\frac{d^2}{dx^2} \) *is a self-adjoint operator*

More generally,

\[
\frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x)
\]

is self-adjoint on \(C^2_0[0, 1] \)
Eigenvalues of self-adjoint operators . . .

... are real: let $Au = \lambda u$

\[
\lambda \|u\|^2_2 = \langle u, \lambda u \rangle = \langle u, Au \rangle = \langle A^* u, u \rangle \\
= \langle Au, u \rangle = \langle \lambda u, u \rangle = \bar{\lambda} \|u\|^2_2
\]

So $\lambda = \bar{\lambda}$ implies \textit{real eigenvalues}.
Eigenvectors of self-adjoint operators . . .

. . . are orthogonal; let $Au = \lambda u$ and $Av = \mu v$

\[
\lambda \langle v, u \rangle = \langle v, Au \rangle = \langle A^* v, u \rangle = \langle Av, u \rangle = \mu \langle v, u \rangle
\]

So $\lambda - \mu \rangle v, u \rangle = 0 \implies \langle v, u \rangle = 0$ implying that

eigenvectors are orthogonal
Elliptic operators

Definition
An operator is *elliptic* if for all $u \neq 0$

$$\langle u, Au \rangle > 0$$

Example
$-\frac{d^2}{dx^2}$
on $C_0^2[0, 1]$

Integrate by parts

$$-\langle u, u'' \rangle = \langle u', u' \rangle \geq \pi^2 \langle u, u \rangle$$

by Sobolev’s lemma
Elliptic operators . . .

More generally,

$$-rac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x)$$

is elliptic if \(p(x) > 0 \) _and_ \(q(x) \geq 0 \)

Example Laplace’s equation

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

\(-\Delta \) is an elliptic operator
Positive definite operators

Definition An operator is *positive definite* if it is self-adjoint and elliptic

$$\mu_2[-A] < 0$$

Example $-d^2/dx^2$ as $\mu_2[d^2/dx^2] = -\pi^2$ on $C^2_0[0, 1]$

Negative Laplacian $-\Delta$ (leads to FEM theory)
8. From Finite Difference to Finite Element

Start with linear differential equation

\[Au = f \quad + \quad \text{boundary conditions} \]

Finite Difference Method (FDM). The main idea

Replace functions \(u \) and \(f \) by vectors and *differential operator \(A \) by matrix* to get a linear system of equations

Example

\[\frac{d^2}{dx^2} u = f(x) \quad \Rightarrow \quad T_{\Delta x} u = f \]
Finite Elements and the Galerkin method

Galerkin Method. The main idea

Approximate function \(u \) by polynomial and keep differential operator \(A \) as is!

Take some polynomial \(v \) satisfying boundary conditions. Insert into original equation to get \(Av \approx f \)

Question Which polynomial gives the best approximation?

Answer Choose \(v \) to minimize the residual \(\| Av - f \|_2 \)
Best approximation = least squares

Let \(\{ \varphi_j \} \) be a polynomial basis, and make the ansatz

\[
v(x) = \sum_{j=1}^{N} c_j \varphi_j(x)
\]

Minimizing \(\| Av - f \|_2 \) is equivalent to requiring that

the residual is orthogonal to each and every \(\varphi_i \)

\[
\langle \varphi_i, Av - f \rangle = 0 \quad \forall i
\]

This is the least-squares approximation!
Best approximation . . .

As \mathcal{A} is linear,

$$\mathcal{A}v = \mathcal{A} \sum_{j=1}^{N} c_j \varphi_j = \sum_{j=1}^{N} c_j \mathcal{A} \varphi_j$$

Then

$$\langle \varphi_i, \mathcal{A}v - f \rangle = 0 \iff \sum_{j=1}^{N} \langle \varphi_i, \mathcal{A} \varphi_j \rangle c_j = \langle \varphi_i, f \rangle$$

This is a linear system of equations $\sum a_{ij} c_j = b_i$ or $Ac = b$, with matrix and vector elements

$$a_{ij} = \langle \varphi_i, \mathcal{A} \varphi_j \rangle \quad \quad b_i = \langle \varphi_i, f \rangle$$
Weak formulation. The problem \(-u'' = f\)

If \(-u'' = f\) then for all \(v\)

\[\langle v, -u'' \rangle = \langle v, f \rangle\]

Integrate by parts and use Dirichlet boundary data to get

Weak formulation \[\langle v', u' \rangle = \langle v, f \rangle\quad \forall v\]

The weak formulation requires \(u\) to be once continuously differentiable, not twice.
Weak formulation and energy norm

Definition The energy norm is defined by

\[a(v, u) = \langle v', u' \rangle \]

and the weak formulation can be written: Find a function \(u \) such that for all test functions \(v \) it holds

\[a(v, u) = \langle v, f \rangle \]

What functions? Choose a polynomial space \(\mathcal{V} \) with basis \(\{ \varphi_j \} \), satisfying the boundary conditions, and require \(v \in \mathcal{V} \) and \(u \in \mathcal{V} \), all defined on suitable grid \(\{ x_i \} \)
Example. The Finite Element Method (FEM)

Given grid \(\{x_i\} \), choose \textit{piecewise linear basis polynomials} \n
\[\varphi_j(x_i) = 1 \text{ if } i = j, \text{ otherwise } 0 \]

\[v(x) = \sum_{j=1}^{N} c_j \varphi_j(x) \]

\text{Note that } v(x_i) = c_i \approx u(x_i)
Galerkin Finite Element Method for $-u'' = f$

Best approximation $a(v, u) = \langle v, f \rangle$, with $u, v \in \mathcal{V}$, leads to

$$a(\varphi_i, \sum_{j=1}^{N} c_j \varphi_j) = \langle \varphi_i, f \rangle$$

which is equivalent to the \textit{finite element equation} $Kc = b$

$$\sum_{j=1}^{N} \langle \varphi'_i, \varphi'_j \rangle c_j = \langle \varphi_i, f \rangle \quad \forall \varphi_i \in \mathcal{V}$$

The \textit{stiffness matrix} K with elements $\{\langle \varphi'_i, \varphi'_j \rangle\}_{i,j=1}^{N}$ can be computed as soon as the basis $\{\varphi_j\}$ has been constructed.

The right-hand side vector b depends on the data f.

Numerical Methods for Differential Equations – p. 81/86
Assume an equidistant grid with spacing Δx. Note that

$$\varphi'_i(x) = 1/\Delta x \quad \text{on} \quad [x_{i-1}, x_i]$$

$$\varphi'_i(x) = -1/\Delta x \quad \text{on} \quad [x_i, x_{i+1}]$$

$$\varphi'_i(x) = 0 \quad \text{elsewhere}$$

Then

$$\langle \varphi'_i, \varphi'_i \rangle = \int_{x_{i-1}}^{x_{i+1}} \frac{1}{\Delta x^2} \, dx = \frac{2}{\Delta x}$$

$$\langle \varphi'_i, \varphi'_{i+1} \rangle = \int_{x_{i}}^{x_{i+1}} \frac{-1}{\Delta x^2} \, dx = \frac{-1}{\Delta x}$$
Stiffness matrix

For equidistant grid with spacing Δx the \textit{stiffness matrix} is

$$K_{\Delta x} = \frac{1}{\Delta x} \text{tridiag}(-1 \quad 2 \quad -1)$$

\textbf{Note}

1) The stiffness matrix is $K_{\Delta x} = -\Delta x \cdot T_{\Delta x}$

2) It is \textit{positive definite}, therefore nonsingular

3) Smallest eigenvalue $\lambda_1[K_{\Delta x}] \approx \pi^2 \Delta x$
Mass matrix

Compute RHS integrals using numerical integration

\[\langle \varphi_i, f \rangle \approx \langle \varphi_i, \sum_{j=0}^{N} f_j \varphi_j \rangle = \sum_{k=-1}^{1} f_{i+k} \langle \varphi_i, \varphi_{i+k} \rangle \]

Need to compute \(\langle \varphi_i, \varphi_{i+k} \rangle = \int_{x_{i-1}}^{x_{i+1}} \varphi_i(x) \varphi_{i+k}(x) \, dx \)

The integrals are \(\langle \varphi_i, \varphi_i \rangle = 2\Delta x / 3 \) and \(\langle \varphi_i, \varphi_{i+1} \rangle = \Delta x / 6 \)

For equidistant grid with spacing \(\Delta x \) the \textit{mass matrix} is

\[B_{\Delta x} = \frac{\Delta x}{6} \text{tridiag}(1 \quad 4 \quad 1) \]
Assembling the system of equations

Final finite element equations is a tridiagonal linear system

\[K_{\Delta x} c = B_{\Delta x} f \]

with *stiffness matrix*

\[K_{\Delta x} = \frac{1}{\Delta x} \text{tridiag}(1 - 2 1) \]

and *mass matrix*

\[B_{\Delta x} = \frac{\Delta x}{6} \text{tridiag}(1 4 1) \]
Advantages of the Finite Element Method

- Produces “continuous solution” not only on grid points
- Can also use basis of higher degree splines
- Can easily use nonuniform grids
- Boundary conditions built into test functions
- In PDEs, easy to work with complex geometries
- Rich theoretical foundation