1. True or false:

(a) If \(A \) is nonsingular, then the number of solutions to \(Ax = b \) depends on the particular choice of vector \(b \).

(b) For a symmetric matrix \(S \), it is always the case that \(\|S\|_1 = \|S\|_\infty \).

(c) If a triangular matrix has a zero entry on its main diagonal, then the matrix is necessarily singular.

(d) The product of two upper triangular matrices is also upper triangular.

(e) If the rows of a square matrix are linearly dependent, then the columns of the matrix are also linearly dependent.

(f) If \(A \) is any \(n \times n \) matrix and \(P \) is any \(n \times n \) permutation matrix, then \(PA = AP \).

(g) For \(x \in \mathbb{R}^n \), \(\|x\|_1 \geq \|x\|_\infty \).

(h) If \(\det(A) = 0 \), then \(\|A\| = 0 \).

(i) The product of two symmetric matrices is also symmetric.

(j) \(\kappa_p(A) = \kappa_p(A^{-1}) \).

(k) Every nonsingular matrix \(A \) can be written as \(A = LU \), where \(L \) is lower triangular and \(U \) is upper triangular.

(l) A non-invertible matrix does not have an LU(P) factorization.

2. Given \(Ax = b \), what effect on the solution vector \(x \) results from

(a) Permuting the rows of \([A \ b]？

(b) Permuting the columns of \(A \)？

(c) Multiplying both sides of the equation from the left by a nonsingular matrix \(M \)？

3. Consider the matrix

\[
A = \begin{bmatrix}
4 & -8 & 1 & 2 \\
6 & 5 & 7 & 3 \\
0 & -10 & -3 & 5 \\
5 & -1 & 1 & 0
\end{bmatrix}
\]

What will the initial pivot in Gaussian elimination be if

(a) No pivoting is used?

(b) Pivoting is used?

4. Given \(n \times n \) matrices \(A \) and \(B \), what is the best way to compute \(A^{-1}B \)?
5. If x is a column vector and A is a matrix, which of the following computations require less work?

(a) $y = (xx^T)A$
(b) $y = x(x^TA)$

6. What is the inverse of a permutation matrix P?

7. Assume you have already computed the LU factorization, $PA = LU$. How would you use it to solve the system $A^Tx = b$?

8. Classify each matrix as well conditioned or ill conditioned:

(a) \[
\begin{pmatrix}
10^{10} & 0 \\
0 & 10^{-10}
\end{pmatrix}
\]
(b) \[
\begin{pmatrix}
10^{10} & 0 \\
0 & 10^{10}
\end{pmatrix}
\]
(c) \[
\begin{pmatrix}
10^{-10} & 0 \\
0 & 10^{-10}
\end{pmatrix}
\]
(d) \[
\begin{pmatrix}
1.0000001 & 2 \\
2 & 4
\end{pmatrix}
\]

9. In solving a linear system $Ax = b$, what is meant by the residual of an approximate solution \hat{x}? Does a small relative residual always imply that the solution is accurate?

10. Rank the following methods according to the amount of work required for solving most systems:

(a) Gaussian elimination
(b) LU factorization followed by forward- and back-substitutions
(c) Explicit matrix inversion followed by matrix-vector multiplication

11. What quantity is minimized when using least squares to solve an overdetemined system $Ax \cong b$?

12. True or false:

(a) A linear least squares problem always has a solution.
(b) At the solution to a least squares problem $Ax \cong b$, the residual vector $r = b - Ax$ is orthogonal to the space generated by A (i.e. Ax for all x).

13. Let A be an $m \times n$ matrix. Under what conditions on the matrix A is the matrix A^TA nonsingular?

14. In an overdetermined linear least squares problem $Ax \cong b$, where A is an $m \times n$, if rank$(A) < n$, then which of the following situations are possible?
(a) There is no solution
(b) There is a unique solution
(c) There is a solution, but it is not unique

15. In solving an overdetermined least squares problem $Ax \approx b$, which would be a more serious difficulty: that the rows of A are linearly dependent, or that the columns of A are linearly dependent?

16. In fitting a straight line $y = x_0 + x_1 t$ to the three data points $(0, 0), (1, 0), (1, 1)$, is the least squares solution unique? Why?

17. What is the Euclidean norm of the minimum residual vector for the following linear least-squares problem?

$$
\begin{pmatrix}
1 & 1 \\
0 & 1 \\
0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\end{pmatrix}
\approx
\begin{pmatrix}
2 \\
1 \\
1 \\
\end{pmatrix}
$$

What is the solution vector for this problem?