1. Det karakteristiska polynomet $det(\lambda I - A) = \lambda^2 - 5\lambda + 6$ har två nollställe $\lambda_1 = 2$ och $\lambda_2 = 3$. En egenvektor med egenvärdet $\lambda_1 = 2$ är $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, och en egenvektor med egenvärden $\lambda_2 = 3$ är $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Det motsvarande homogena systemet har en allmän lösning

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix}_h = c_12^k \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_23^k \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

Det inhomogena systemet har en partikulär lösning

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix}_p = \left(I - \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \right)^{-1} \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

Så har det inhomogena systemet en allmän lösning

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix} = c_12^k \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_23^k \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

Men $x_0 = 4$ och $y_0 = -5$. Så är

$$c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix},$$

som ger $c_1 = c_2 = 1$. Det sökta lösningen blir

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix} = 2^k \begin{pmatrix} 1 \\ -1 \end{pmatrix} + 3^k \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

2. Det karakteristiska polynomet $det(\lambda I - A) = (\lambda - 1)^2 - 9$ har två nollställe $\lambda_1 = -2$ och $\lambda_2 = 4$. En egenvektor med egenvärdet $\lambda_1 = -2$ är $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, och en egenvektor med egenvärden $\lambda_2 = 4$ är $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Den allmänna lösningen av systemet är

$$x(t) = c_1e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2e^{4t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Skriv $S = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Så är $S^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ och

$$e^{tA} = S \begin{pmatrix} e^{-2t} & 0 \\ 0 & e^{4t} \end{pmatrix} S^{-1} = \frac{1}{2} \begin{pmatrix} e^{-2t} + e^{4t} & -e^{-2t} + e^{4t} \\ -e^{-2t} + e^{4t} & e^{-2t} + e^{4t} \end{pmatrix}.$$
3. a) Den kausala primitiva distributionen blir \((t - 1)\theta(t) - 1 + t^2\theta(t)/3\).
b) \(f'(t) = \delta(t - 1) + 2t\theta(t) + t^2\delta(t) = \delta(t - 1) + 2t\theta(t)\).
c)
\[f(t) \ast f'(t) = \left(\theta(t - 1) + t^2\theta(t)\right) \ast \left(\delta(t - 1) + 2t\theta(t)\right) \]
\[= \theta(t - 2) + (t - 1)^2\delta(t - 1) + 2T_1(\theta(t) \ast t\theta(t)) + 2 \left(t^2\delta(t) \ast t\theta(t) \right) \]
\[= \theta(t - 2) + (t - 1)^2\delta(t - 1) + 2T_1(\theta(t) \int_0^t \tau d\tau) + 2 \left(\theta(t) \int_0^t (t - \tau)^2 d\tau \right) \]
\[= \theta(t - 2) + 2(t - 1)^2\delta(t - 1) + \frac{t^4}{6} \theta(t). \]

4. a) Från Formelbladet har vi
\[\mathcal{F}\left(e^{it}h(2t)\right)(w) = \mathcal{F}(h(2t)) \left(\frac{w-1}{2}\right) = \frac{4}{4 + (w-1)^2}. \]
Så är
\[\mathcal{F}^{-1}\left(e^{it}h(2t)\right)(w) = \frac{1}{2\pi} \mathcal{F}\left(e^{it}h(2t)\right)(-w) = \frac{2}{4\pi + (w+1)^2}. \]
b) Eftersom \(\int_0^\infty h(t)dt = \int_0^\infty e^{-|t|}dt = 2\int_0^\infty e^{-t}dt = 2 < \infty\), så är systemet insignal-utsignalstabilt.
c) \(y(t) = h \ast w(t) = h \ast h'(t)\).
Fouriertransformering av båda leden ger
\[\hat{y}(w) = \hat{h}(w)\hat{h}'(w) = i\omega\hat{h}(w)^2 = \frac{4\omega i}{(1 + \omega^2)^2} = -i \left(\frac{2}{1 + \omega^2} \right)' . \]
Alltså \(y(t) = -te^{-|t|}\).

5. a) Skriver
\[f(s) = \frac{s}{s^2 + 2s + 2} = \frac{1 + (s + 1)}{(s + 1)^2 + 1} - \frac{1}{(s + 1)^2 + 1}. \]
Den kausala inversa Laplacetransformen blir
\[\mathcal{L}^{-1}(f(s))(t) = e^{-t} (\cos t - \sin t) \theta(t). \]
b) Laplace-transformering av ekvationen medför
\[s\mathcal{L}(y)(s) - \frac{1}{s}\mathcal{L}(y)(s) = \frac{1}{s^2 + 1}. \]
Detta ger
\[\mathcal{L}(y)(s) = \frac{s}{s^4 - 1}, \]
som har fyra enkla poler \(\pm 1, \pm i\). Residyerna till funktionen \(\frac{e^{\pm is}}{s^2 + 1}\) i dessa punkter är
\[\text{Res} \left(\frac{e^{\pm is}}{s^4 - 1}, 1 \right) = \frac{e^{\pm is}}{s^3 - 1} \bigg|_{s=1} = \frac{e^{\pm is}}{4s^2} \bigg|_{s=1} = \frac{e^{\pm i}}{4}, \]
Den sökta kausala lösningen är

\[y(t) = \theta(t) \left(\frac{e^t}{4} + \frac{e^{-t}}{4} - \frac{e^{it}}{4} - \frac{e^{-it}}{4} \right) = \frac{\theta(t)}{4} \left(e^t + e^{-t} - 2 \cos t \right). \]

6. Substitutionen av \(x = 2t \) ger

\[
\int_{-\infty}^{\infty} \sin x \cdot \frac{1}{4 + x^2} \, dx = \frac{1}{4} \int_{-\infty}^{\infty} \frac{\sin 2t}{t} \cdot \frac{1}{1 + t^2} \, dt.
\]

Parsevals formel ger

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2 \sin 2w}{w} \cdot \frac{2}{1 + w^2} \, dw = \int_{-\infty}^{\infty} (\theta(t) + 2 - \theta(t - 2)) e^{-|t|} \, dt = 2 \int_{0}^{2} e^{-t} \, dt = 2 \left(1 - e^{-2} \right),
\]

dvs

\[
\int_{-\infty}^{\infty} \frac{\sin 2w}{w} \cdot \frac{1}{1 + w^2} \, dw = \pi \left(1 - e^{-2} \right).
\]

Så är

\[
\int_{-\infty}^{\infty} \frac{\sin x}{x} \cdot \frac{1}{4 + x^2} \, dx = \frac{\pi}{4} \left(1 - e^{-2} \right).
\]

7. a) Det karaktäristiska polynomet

\[
\begin{vmatrix}
\lambda + 1/2 & -1 \\
-b & \lambda + 1/2
\end{vmatrix} = \left(\lambda + \frac{1}{2} \right)^2 - b
\]

har två olika nollställe \(\lambda = -\frac{1}{2} \pm \sqrt{b} \) då \(b \neq 0 \). Så är matrisen diagonaliserbar då \(b \neq 0 \). För \(b = 0 \) har matrisen egenvärde \(\lambda_1 = \lambda_2 = -\frac{1}{2} \) och vi kan bara hitta en linjärt oberoende egenvektor, som medför att matrisen inte är diagonaliserbar. Alltså, matrisen är diagonaliserbar då \(b \neq 0 \).

b) Om \(b < 0 \) så är \(\text{Re} \{ -1/2 \pm \sqrt{b} \} = -1/2 < 0 \), som medför att systemet är stabilt.

Om \(b \geq 0 \) så gäller \(\text{Re} \{ -1/2 \pm \sqrt{b} \} = -1/2 + \sqrt{b} < 0 \) om och endast om \(b < 1/4 \), som medför att systemet är stabilt. Alltså, systemet är stabilt bara för \(b < 1/4 \).

8. Sätt \(w(t) = \delta(t) \). Så blir \(y(t) = h(t) \). Laplacetransformering medför

\[
\begin{aligned}
s^2 \mathcal{L}(x_1) - \mathcal{L}(x_1) &= \mathcal{L}(\delta(t)) \\
s \mathcal{L}(x_2) + 2 \mathcal{L}(x_2) &= \frac{1}{s} \mathcal{L}(x_1) + s \mathcal{L}(\delta(t)) \\
\mathcal{L}(h) &= \mathcal{L}(x_2) + e^{-3s} \mathcal{L}(x_2).
\end{aligned}
\]
Så är
\[\mathcal{L}(x_1) = \frac{1}{s^2-1}. \]
\[\mathcal{L}(x_2) = \frac{1}{s+2} \left(\frac{1}{s} \mathcal{L}(x_1) + s \right) = 1 + \frac{2}{s+2} + \frac{1}{(s+2)s(s^2-1)}. \]

\[H(s) = \mathcal{L}(h)(s) = 1 - \frac{2}{s+2} + \frac{1}{(s+2)s(s^2-1)} + e^{-3s} \left(1 - \frac{2}{s+2} + \frac{1}{(s+2)s(s^2-1)} \right). \]

Vi har
\[h(t) = \mathcal{L}^{-1} (H(s)) (t) = \delta(t) - 2e^{-2t} \theta(t) + \mathcal{L}^{-1} \left(\frac{1}{(s+2)s(s^2-1)} \right) (t) \]
\[+ \delta(t-3) - 2e^{-2(t+6)} \theta(t-3) + \mathcal{L}^{-1} \left(\frac{1}{(s+2)s(s^2-1)} \right) (t-3). \]

Den rationella funktionen \(\frac{1}{(s+2)s(s^2-1)} \) har fyra poler: \(-2\), \(-1\), 0, 1. Vi får
\[\text{Res} \left(\frac{e^{ts}}{(s+2)s(s^2-1)}, -2 \right) = e^{ts} \bigg|_{s=-2} = -\frac{e^{-2t}}{6}, \]
\[\text{Res} \left(\frac{e^{ts}}{(s+2)s(s^2-1)}, -1 \right) = e^{ts} \bigg|_{s=-1} = -\frac{e^{-t}}{2}, \]
\[\text{Res} \left(\frac{e^{ts}}{(s+2)(s^2-1)}, 0 \right) = \frac{e^{ts}}{s+2} \bigg|_{s=0} = \frac{1}{2}, \]
\[\text{Res} \left(\frac{e^{ts}}{(s+2)s(s^2-1)}, 1 \right) = e^{ts} \bigg|_{s=1} = \frac{e^t}{6}. \]

Så gäller
\[h(t) = \delta(t) - 2e^{-2t} \theta(t) + \theta(t) \left(-\frac{e^{-2t}}{6} + \frac{e^{-t}}{2} - \frac{1}{2} + \frac{e^t}{6} \right) \]
\[+ \delta(t-3) - 2e^{-2(t+6)} \theta(t-3) + \theta(t-3) \left(-\frac{e^{-2t+6}}{6} + \frac{e^{-t+3}}{2} - \frac{1}{2} + \frac{e^{t-3}}{6} \right). \]

9. Fouriertransformera differentialekvationen och vi får
\[(iw)^5 \ddot{y}(w) - (iw)^3 \dddot{y}(w) + \ddot{y}(w) = \ddot{g}(w), \]

som ger
\[|\ddot{y}(w)| = \left| \frac{\ddot{g}(w)}{1 + i(w^3 + w^5)} \right| = \frac{|\ddot{g}(w)|}{\sqrt{1 + w^6(w^2 + 1)^2}} \leq |\ddot{g}(w)|. \]

Parsevals formel ger
\[\int_{-\infty}^{\infty} |y(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{y}(w)|^2 \, dw \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{g}(w)|^2 \, dw = \int_{-\infty}^{\infty} |g(t)|^2 \, dt. \]
10. a)

\[e^t A = I + tA + \frac{t^2}{2!} A^2 + \frac{t^3}{3!} A^3 + \frac{t^4}{4!} A^4 + \frac{t^5}{5!} A^5 + \frac{t^6}{6!} A^6 + \cdots \]

\[= I + tA + \frac{t^2}{2!} A^2 + \frac{t^3}{3!} A + \frac{t^4}{4!} A^2 + \frac{t^5}{5!} A + \frac{t^6}{6!} A^2 + \cdots \]

\[= I + \left(t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots \right) A + \left(\frac{t^2}{2!} + \frac{t^4}{4!} + \frac{t^6}{6!} + \cdots \right) A^2. \]

Så är

\[f(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots = \frac{1}{2} \left(e^t - e^{-t} \right) \]

och

\[g(t) = \frac{t^2}{2!} + \frac{t^4}{4!} + \frac{t^6}{6!} + \cdots = \frac{1}{2} \left(e^t + e^{-t} - 2 \right). \]

b) Ur a) vet vi att varje element av exponentmatrisen \(e^t A \) är en linjärkombination av funktionerna 1, \(e^t \) och \(e^{-t} \). Så är alla möjliga egenvärde av \(A \) är 0, 1, -1. Men spåret \(\text{tr}(A) \) är lika med summan av alla egenvärderna av \(A \). Så måste \(\text{tr}(A) \) vara ett heltal.