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1. a) The Hessian H must be positive semidefinite. Necessarily,
det H=—(a+2)0>>0 < a=-2
For this value of a we can complete the squares
Trr,. 2 3
x Hr = (z7 — 2x9 + x3)° > 0, Vx € R°,
hence, the matrix is positive semidefinite by definition.

Answer: a = —2.

b) If the minimum exists then it is a stationary point of f. The function is convex,
therefore, a stationary point is the global minimum. Thus, the minimum exists
& a stationary point exists < there exists a solution to

a 0
+ bl = 1|0 &S a=b=c
c 0

Vi(x,y,z)=2(x+y+2)

—_ = =

Answer: a = b =c.
c) See the book, Lemma 1, p. 43.

2. a) The function is convex iff —In(y — 2?) is convex. Try h(z,y) = 2* — y convex,

g(t) = —In|t|, t < 0, increasing (¢'(t) = —1 > 0) and convex (¢"(t) = % > 0),
hence, g(h(z,y)) is convex.
Answer: Yes.

b) Yes, q. — +oo when (z,y) approaches the boundary y = 2.

¢) The minimum of ¢. on D, exists because the function is convex and there is a
feasible stationary point

1+€3§,2 0 y — 22 4 22€ = 0, r=-1
quzll y1:|:|:0:| & { & C

el 2 _
€ a2 y—x°—e=0.

which is the minimum of ¢.. It converges to (—1/2,1/4), hence, it is the global
minimum of the constrained problem.

3. a) The dual problem is

y1+3y2 +3yzs = 1,
) . 3y +5y2 +ys > 4,
min (6y; + Ty, + 2 subject to
(61 + 792 + 2ys) ) yitytys > 3,
y2 =0, y3 < 0.

The CSP gives yo = y3 = 0 and y; + y2 + y3 = 3, that is y = (3,0,0). It is dual
feasible, hence, both solutions are optimal.



b) The statement 2 is equivalent to
ATy =0, by >0
has no solution. Rewriting it as the standard (first) Farkas alternative
AT
{_AT}ySO, by >0

makes the second alternative

-l [

being solvable. Denote x = u — v to conclude that it is equivalent to the state-
ment 1.

4. a) Since all g, are convex we have

gl(izl +(1 - 1)22) igl(zl) +(1 - 1)91(22)

2(Az1 + (1 — A)z 2(21 1—X)go(29

(1N = | PO T ORI Al EE MR et
In(Az1 + (1= N)z2) Agn(21) + (1 = A)gn(22)

Now we have convexity of h by definition from

¢! 2

Jlghz+ (1= N)z2)) < f(Ag(z1) + (1 = A)g(22)) < A fg(z1)) +(1 = A) fg(22)) .-
h(AzH—E—A)zg) h(z1) h(z2)

~
—
~

where (1) follows from the above relation and f being coordinate-wise increasing,
and (2) follows from convexity of f.

b) The function h; is convex since

hu(z,y,2) = Vad + 8+ 26 = /(J2)2 + ([y1*)? + ([2*)?

can be split as h = f o g where

flg1,92,95) = \Jgi + 05+ a3 = llgll,  glz,y,2) = (|2, [y, |2]*).

Here all gy(x,y, z) are convex and f is convex and coordinate-wise increasing,.

The function hs is not convex. Set y = z = 0 to get the restriction {/|z| that is
not convex.

c) The Hessian is

- 2 4y
T4y dx+12(1+a)y? |

It is positive-semidefinite in the set iff
det H = 8(z + (1+ 3a)y*) >0, Vz>0.
It is equivalent to 1 +3a > 0 < a > —%.

Answer: a > —%.



5. Existence of the minimum.
Use x +y =4 and z,y > 0 to conclude that x,y are bounded from above.
Take x = y = 2, z = 1/4. Then it is enough to consider zy +2Inz <4 —2In4 < 2
= Inz < 1, hence z is bounded from above as well.
Now use xyz > 1 to prove that z,y, z are bounded away from 0 from below. It makes
the set compact. The minimum exists by Weierstrass theorem.
We set X = {(z,y,2): >0, y >0, z> 0},

g(x,y,z) =1—ayz, h(x,y,z)=x+y—4.

CQ points. No such.

KKT points.
(y—uyz+v = 0, (1)
r—urz+v = 0, (2)
2 _uzy = 0, (3)
u(l—zyz) = 0, (4)
u > 0, (5)
| feasibility (6)

u = 0 makes (3) impossible. For u > 0 we get zyz = 1 and v = 2 from (3). The first
two equations yields

v=y2z—-1)=2(22-1) = (z—y)(2z2—1)=0.

Ifr=ythenz+y=4=x=y=2and zyz =1 = z = 1/4, hence, (2,2,1/4)
is a KKT point with f =4 —2In4 =4 —41n2.

If 22 =1« 2z =1/2 then zy = 2 from (3) which together with x +y = 4 implies
that x,y solves the quadratic equation

2 4+2=0 < =242

Another KKT point is (24 +v/2,2Fv/2,1/2), f =2 —2In2.
Answer: (2+£+/2,2F v2,1/2).

6. a) Write down the Lagrange function

Llz,u) = 2> =120+ +2y +ur(a® +y —4) +ug(—2* + > +1) =
(1 +up —ug)2® — 122 + (1 4+ ug)y® + (2 + w1 )y + ug — 4uy.

Minimization w.r.t. y > 0 is clearly at y = 0.
Minimization w.r.t. z depends on:
if 1+ uy —ug <0 then inf, L = —oo0.
if 1 4+ u; — uy > 0 then the function L is convex in x and

6

v = 2(1+u —ug)x o —



b)

hence it is the minimum.
It gives
30 du; +u f0<uy<1l+uw
-5 . b 1 — )
O(u) = 1+u —uy ! 2 2 !
—00 otherwise.

Let us see if there is a stationary point w.r.t. u;

36
= 4=0 & 1 — U =3 & = 2.
ul (1 + up — u2>2 —|—’LL1 U2 Uy U +

This u; maximizes © as the dual function is concave. It is left to maximize w.r.t.
uy > 0 for the found wuy

The function is decreasing, hence, the maximum is at us = 0. Therefore, 1y = 0,
uy = 2 and ©(u) = —20. The candidate x,y from above is 7 =6/3 =2,y =0
gives f(z,y) = —20 = ©(u), thus, the optimal point is (2,0).

O(u,v) = ig}f(L(a:,u,v) < Lz, u,v) = f(x) +ul g(z) +0 h(z) < f(2).
’ % jnry



