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1. a) The Hessian H must be positive semidefinite. Necessarily,

detH = −(a+ 2)2 ≥ 0 ⇔ a = −2.

For this value of a we can complete the squares

xTHx = (x1 − 2x2 + x3)
2 ≥ 0, ∀x ∈ R3,

hence, the matrix is positive semidefinite by definition.
Answer: a = −2.

b) If the minimum exists then it is a stationary point of f . The function is convex,
therefore, a stationary point is the global minimum. Thus, the minimum exists
⇔ a stationary point exists ⇔ there exists a solution to

∇f(x, y, z) = 2(x+ y + z)

1
1
1

+

ab
c

 =

0
0
0

 ⇔ a = b = c.

Answer: a = b = c.

c) See the book, Lemma 1, p. 43.

2. a) The function is convex iff − ln(y − x2) is convex. Try h(x, y) = x2 − y convex,
g(t) = − ln |t|, t < 0, increasing (g′(t) = −1

t
> 0) and convex (g′′(t) = 1

t2
> 0),

hence, g(h(x, y)) is convex.
Answer: Yes.

b) Yes, qε → +∞ when (x, y) approaches the boundary y = x2.

c) The minimum of qε on Dq exists because the function is convex and there is a
feasible stationary point

∇qε =

[
1 + ε 2x

y−x2

1− ε 1
y−x2

]
=

[
0
0

]
⇔

{
y − x2 + 2xε = 0,

y − x2 − ε = 0.
⇔

{
x = −1

2
,

y = 1
4

+ ε,

which is the minimum of qε. It converges to (−1/2, 1/4), hence, it is the global
minimum of the constrained problem.

3. a) The dual problem is

min (6y1 + 7y2 + 2y3) subject to


y1 + 3y2 + 3y3 ≥ 1,
3y1 + 5y2 + y3 ≥ 4,
y1 + y2 + y3 ≥ 3,

y2 ≥ 0, y3 ≤ 0.

The CSP gives y2 = y3 = 0 and y1 + y2 + y3 = 3, that is y = (3, 0, 0). It is dual
feasible, hence, both solutions are optimal.



b) The statement 2 is equivalent to

ATy = 0, bTy > 0

has no solution. Rewriting it as the standard (first) Farkas alternative[
AT

−AT
]
y ≤ 0, bTy > 0

makes the second alternative[
A −A

] [u
v

]
= b,

[
u
v

]
≥ 0

being solvable. Denote x = u− v to conclude that it is equivalent to the state-
ment 1.

4. a) Since all gk are convex we have

g(λz1+(1−λ)z2) =


g1(λz1 + (1− λ)z2)
g2(λz1 + (1− λ)z2)

...
gn(λz1 + (1− λ)z2)

 ≤

λg1(z1) + (1− λ)g1(z2)
λg2(z1) + (1− λ)g2(z2)

...
λgn(z1) + (1− λ)gn(z2)

 = λg(z1)+(1−λ)g(z2).

Now we have convexity of h by definition from

f(g(λz1 + (1− λ)z2))︸ ︷︷ ︸
h(λz1+(1−λ)z2)

(1)

≤ f(λg(z1) + (1− λ)g(z2))
(2)

≤ λ f(g(z1))︸ ︷︷ ︸
h(z1)

+(1− λ) f(g(z2))︸ ︷︷ ︸
h(z2)

.

where (1) follows from the above relation and f being coordinate-wise increasing,
and (2) follows from convexity of f .

b) The function h1 is convex since

h1(x, y, z) =
√
x6 + y6 + z6 =

√
(|x|3)2 + (|y|3)2 + (|z|3)2

can be split as h = f ◦ g where

f(g1, g2, g3) =
√
g21 + g22 + g23 = ‖g‖, g(x, y, z) = (|x|3, |y|3, |z|3).

Here all gk(x, y, z) are convex and f is convex and coordinate-wise increasing.

The function h2 is not convex. Set y = z = 0 to get the restriction 3
√
|x| that is

not convex.

c) The Hessian is

H =

[
2 4y
4y 4x+ 12(1 + a)y2

]
.

It is positive-semidefinite in the set iff

detH = 8(x+ (1 + 3a)y2) ≥ 0, ∀x ≥ 0.

It is equivalent to 1 + 3a ≥ 0 ⇔ a ≥ −1
3
.

Answer: a ≥ −1
3
.



5. Existence of the minimum.
Use x+ y = 4 and x, y > 0 to conclude that x, y are bounded from above.
Take x = y = 2, z = 1/4. Then it is enough to consider xy + 2 ln z ≤ 4− 2 ln 4 ≤ 2
⇒ ln z ≤ 1, hence z is bounded from above as well.
Now use xyz ≥ 1 to prove that x, y, z are bounded away from 0 from below. It makes
the set compact. The minimum exists by Weierstrass theorem.

We set X = {(x, y, z) : x > 0, y > 0, z > 0},

g(x, y, z) = 1− xyz, h(x, y, z) = x+ y − 4.

CQ points. No such.

KKT points. 

y − uyz + v = 0, (1)

x− uxz + v = 0, (2)
2
z
− uxy = 0, (3)

u(1− xyz) = 0, (4)

u ≥ 0, (5)

feasibility (6)

u = 0 makes (3) impossible. For u > 0 we get xyz = 1 and u = 2 from (3). The first
two equations yields

v = y(2z − 1) = x(2z − 1) ⇒ (x− y)(2z − 1) = 0.

If x = y then x + y = 4 ⇒ x = y = 2 and xyz = 1 ⇒ z = 1/4, hence, (2, 2, 1/4)
is a KKT point with f = 4− 2 ln 4 = 4− 4 ln 2.

If 2z = 1 ⇔ z = 1/2 then xy = 2 from (3) which together with x+ y = 4 implies
that x, y solves the quadratic equation

t2 − 4t+ 2 = 0 ⇔ t = 2±
√

2.

Another KKT point is (2±
√

2, 2∓
√

2, 1/2), f = 2− 2 ln 2.

Answer: (2±
√

2, 2∓
√

2, 1/2).

6. a) Write down the Lagrange function

L(x, u) = x2 − 12x+ y2 + 2y + u1(x
2 + y − 4) + u2(−x2 + y2 + 1) =

= (1 + u1 − u2)x2 − 12x+ (1 + u2)y
2 + (2 + u1)y + u2 − 4u1.

Minimization w.r.t. y ≥ 0 is clearly at y = 0.
Minimization w.r.t. x depends on:

if 1 + u1 − u2 ≤ 0 then infx L = −∞.

if 1 + u1 − u2 > 0 then the function L is convex in x and

L′x = 2(1 + u1 − u2)x− 12 = 0 ⇔ x =
6

1 + u1 − u2
,



hence it is the minimum.
It gives

Θ(u) =

−
36

1 + u1 − u2
− 4u1 + u2, if 0 ≤ u2 < 1 + u1,

−∞ otherwise.

Let us see if there is a stationary point w.r.t. u1

Θ′u1 =
36

(1 + u1 − u2)2
− 4 = 0 ⇔ 1 + u1 − u2 = 3 ⇔ u1 = u2 + 2.

This u1 maximizes Θ as the dual function is concave. It is left to maximize w.r.t.
u2 ≥ 0 for the found u1

Θ = −12− 4(u2 + 2) + u2 = −20− 3u2.

The function is decreasing, hence, the maximum is at u2 = 0. Therefore, ū2 = 0,
ū1 = 2 and Θ(ū) = −20. The candidate x, y from above is x̄ = 6/3 = 2, ȳ = 0
gives f(x̄, ȳ) = −20 = Θ(ū), thus, the optimal point is (2, 0).

b)

Θ(u, v) = inf
x∈X

L(x, u, v) ≤ L(x, u, v) = f(x) + uTg(x)︸ ︷︷ ︸
≤0

+vT h(x)︸︷︷︸
=0

≤ f(x).


