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In order to sit for the examination you must be enrolled in the course. No aids except the

formula sheet provided in the examination hall. Use the papers provided by the department
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initials on each sheet. Write legibly. Give concise and short arguments.

1. Solve the heat conduction problem

∂tu(x, t) = ∂2

xu(x, t), 0 ≤ x ≤ π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = sin3 3x, 0 ≤ x ≤ π.

2. Which of the following series are convergent?

a)

∞
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(

1

k3

)

, b)

∞
∑
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cos πk

1 +
√
k
, c)

∞
∑

k=1

√
k

1 + k2
cos k.

3. Let u be the 2π-periodic function for which

u(x) = coshx =
ex + e−x

2

when |x| ≤ π.

a) Find the Fourier series expansion of u.

b) Compute the sum of the series

∞
∑

k=0

1

1 + k2
.

4. Use power series to find a solution of the problem

(1− x2)y′′ − 2xy′ + 12y = 0, y(0) = 0, y′(0) = 1.

5. Let c be a positive constant. Show that the series

∞
∑

k=0

(−1)kxk(1− x)c

is uniformly convergent in [0, 1]. Hint: The Weierstrass M-test can be applied only
when c > 1. Marks are given also for correct partial solutions.


