Two view geometry

- Computing cameras from F
- The calibrated case: The Essential Matrix
- The 8-point algorithm (again)
- Computing the cameras from E.
Computing Cameras from F

See Lecture notes....
Computing Cameras from F

Demo.
Relative Orientation: The Calibrated Case

Problem Formulation

Given two sets of corresponding (normalized) points \(\{x_i\} \) and \(\{\bar{x}_i\} \), compute camera matrices \(P_1 = [R_1 \ t_1] \), \(P_2 = [R_2 \ t_2] \) and 3D-points \(\{X_i\} \) such that

\[
\lambda_i x_i = P_1 X_i
\]

and

\[
\bar{\lambda}_i \bar{x}_i = P_2 X_i.
\]
If \(P_1 = \begin{bmatrix} R_1 & t_1 \end{bmatrix} \) and \(P_2 = \begin{bmatrix} R_2 & t_2 \end{bmatrix} \), apply the transformation

\[
H = \begin{bmatrix} R_1^T & -R_1^T t_1 \\ 0 & 1 \end{bmatrix}.
\]

Then

\[
P_1 H = \begin{bmatrix} R_1 & t_1 \end{bmatrix} \begin{bmatrix} R_1^T & -R_1^T t_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix}.
\]

Hence, we may assume that the cameras are

\[
P_1 = \begin{bmatrix} I & 0 \end{bmatrix} \quad \text{and} \quad P_2 = \begin{bmatrix} R & t \end{bmatrix}
\]
The camera pair $P_1 = [I \ 0]$ and $P_2 = [R \ t]$ has the fundamental matrix

$$E = [t] \times R.$$

E is called the essential matrix.

- R has 3 dof, t 3 dof, but the scale is arbitrary, therefore E has 5 dof.
- E has $det(E) = 0$
- E has two nonzero equal singular values.
The Essential Matrix

The 8-point algorithm (again)

- Extract at least 8 point correspondences.
- Normalize the coordinates (multiply with K^{-1}, K inner parameters).
- Form M and solve
 \[
 \min_{\|\nu\|^2=1} \|M\nu\|^2,
 \]
 using svd.
- Form the matrix E (ensure that $\text{det}(E) = 0$ and that E has two nonzero equal singular values).
- Compute a pair of cameras from E.
- Compute the scene points.
The Essential Matrix

Issues

Resulting E may not have $\text{det}(E) = 0$ and two nonzero equal singular values.

Pick the closest essential matrix A.

Can be solved using svd, in matlab:

\[
\begin{align*}
[U, S, V] &= \text{svd}(E); \\
S &= \frac{(S(1, 1) + S(2, 2))}{2}; \\
S &= \text{diag}([s \ s \ 0]); \\
A &= U \ast S \ast V';
\end{align*}
\]

Note: Since the scale of the essential matrix is arbitrary we may assume that $s = 1$. That is use $S = \text{diag}([1 \ 1 \ 0]);$ instead.
Computing the cameras

Want to find $P_2 = [R \ t]$ such that $E = [t]_x R$.

Outline:

- Ensure that E has the SVD

 \[E = USV^T \]

 where $\det(USV^T) = 1$.

- Compute a factorization $E = SR$ where S is skew symmetric and R a rotation.

- Compute a t such that $[t]_x = S$.

- Form the camera $P_2 = [R \ t]$.

See lecture notes for details...
The Twisted Pair
To do

- Work on assignment 2