Two view geometry

- Relative orientation of two cameras
- The epipolar constraints
- The uncalibrated case: The Fundamental Matrix
- The 8-point algorithm
Relative Orientation: Problem Formulation

Given

Two images and corresponding points.

Compute

The structure (3D-points) and the motion (camera matrices).
Mathematical Formulation

Given two sets of corresponding points \(\{x_i\} \) and \(\{\bar{x}_i\} \), compute camera matrices \(P_1 \), \(P_2 \) and 3D-points \(\{X_i\} \) such that

\[
\lambda_i x_i = P_1 X_i
\]

and

\[
\bar{\lambda}_i \bar{x}_i = P_2 X_i.
\]
Ambiguities (uncalibrated case)

Can always apply a projective transformation H to obtain a different solution

$$
\lambda_i x_i = P_1 H H^{-1} x_i = \tilde{P}_1 \tilde{x}_i
$$

and

$$
\bar{\lambda}_i \bar{x}_i = P_2 H H^{-1} x_i = \bar{P}_2 \bar{x}_i.
$$
Simplification

If $P_1 = [A_1 \ t_1]$ and $P_2 = [A_2 \ t_2]$, apply the transformation

$$H = \begin{bmatrix} A_1^{-1} & -A_1^{-1} t_1 \\ 0 & 1 \end{bmatrix}.$$

Then

$$P_1 H = \begin{bmatrix} A_1 & t_1 \end{bmatrix} \begin{bmatrix} A_1^{-1} & -A_1^{-1} t_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix}.$$

Hence, we may assume that the cameras are

$$P_1 = \begin{bmatrix} I & 0 \end{bmatrix} \text{ and } P_2 = \begin{bmatrix} A & t \end{bmatrix}$$
Consider a single point x in the first image. Any point on the line projects to this point.
Any point on the projection of the 3D line can correspond to x.
Epipolar Geometry
The projected lines should all meet in a point. The so called **epipole** is the projection of the camera center of the other camera.
The epipole e_1 is the projection of the C_2 in P_1. The epipole e_2 is the projection of the C_1 in P_2. e_1, e_2 usually outside field of view.
See lecture notes.
The Fundamental Matrix

Estimating F

If \mathbf{x}_i and $\bar{\mathbf{x}}_i$ corresponding points

$$\bar{\mathbf{x}}_i^T F \mathbf{x}_i = 0.$$

If $\mathbf{x}_i = (x_i, y_i, z_i)$ and $\bar{\mathbf{x}}_i = (\bar{x}_i, \bar{y}_i, \bar{z}_i)$ then

$$\bar{\mathbf{x}}_i^T F \mathbf{x}_i = F_{11} \bar{x}_i x_i + F_{12} \bar{x}_i y_i + F_{13} \bar{x}_i z_i + F_{21} \bar{y}_i x_i + F_{22} \bar{y}_i y_i + F_{23} \bar{y}_i z_i + F_{31} \bar{z}_i x_i + F_{32} \bar{z}_i y_i + F_{33} \bar{z}_i z_i$$
JUST DLT IT.
The Fundamental Matrix

Estimating F

In matrix form (one row for each correspondence):

\[
\begin{bmatrix}
\bar{x}_1 x_1 & \bar{x}_1 y_1 & \bar{x}_1 z_1 & \ldots & \bar{z}_1 z_1 \\
\bar{x}_2 x_2 & \bar{x}_2 y_2 & \bar{x}_2 z_2 & \ldots & \bar{z}_2 z_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bar{x}_n x_n & \bar{x}_n y_n & \bar{x}_n z_n & \ldots & \bar{z}_n z_n \\
\end{bmatrix}
\begin{bmatrix}
F_{11} \\
F_{12} \\
F_{13} \\
\vdots \\
F_{33}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

Solve using homogeneous least squares (svd).
F has 9 entries (but the scale is arbitrary). Need at least 8 equations (point correspondences).
The Fundamental Matrix

Issues

Resulting F may not have $\text{det}(F) = 0$.
Pick the closest matrix A with $\text{det}(A) = 0$.

Can be solved using svd, in matlab:

$$[U, S, V] = \text{svd}(F);$$
$$S(3, 3) = 0;$$
$$A = U \ast S \ast V';$$
The Fundamental Matrix

Issues

Normalization needed (see DLT).
If \(x_1 \) and \(\bar{x}_1 \approx 1000 \) pixels, the coefficients \(z_1 \bar{z}_1 = 1 \), \(x_1 \bar{z}_1 = 1000 \) and \(x_1 \bar{x}_1 = 1000000 \). May give poor numerics.

Not normalized:

Normalized:
The Fundamental Matrix

The 8-point algorithm

- Extract at least 8 point correspondences.
- Normalize the coordinates (see DLT).
- Form M and solve
 \[
 \min_{||v||^2=1} ||Mv||^2,
 \]
 using svd.
- Form the matrix F (ensure that $det(F) = 0$).
- Transform back to the original coordinates.
- Compute a pair of cameras from F (next lecture).
- Compute the scene points (next lecture).
The Fundamental Matrix

Demo.