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1 The transportation problem and algorithm
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The transportation problem

The transportation problem concerns minimization of the
transportation of goods from a company’s factories to its
warehouses. We start with an example with 3 factories and 4
warehouses.

Example (p. 296)

Let the cost of transportation per unit of goods from factory i to
warehouse j be given by the table

W1 W2 W3 W4

F1 5 7 9 6
F2 6 7 10 15
F3 7 6 8 1
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The transportation problem

Example (Cont.)

I Let the supply and demand vectors be given by

s =

120140
100

 and d =


100
60
80
120

 , respectively.

They represent the amount of the product that each factory
can supply and each warehouse demands, respectively.

I The problem is feasible if and only if the total supply is not less
than the total demand, i.e. if and only if

∑3
i=1 si ≥

∑4
j=1 dj .

We have
∑3

i=1 si = 120+ 140+ 100 = 360 and∑4
j=1 dj = 100+ 60+ 80+ 120 = 360, so the feasibility

condition is satisfied.
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The transportation problem

I In the theory for the transportation problem, it can always be
assumed that

∑m
i=1 si =

∑n
j=1 dj (for feasible problems), since

if
∑m

i=1 si >
∑n

j=1 dj , then we can introduce an extra column
in the table for transportation costs, that represent the
amount of goods that stays in the factory. We let the shipping
costs be 0 for that column. We also need to add an extra
entry to the demand vector with the missing amount, so that∑m

i=1 si =
∑n

j=1 dj .
I From now on, we will assume that

∑m
i=1 si =

∑n
j=1 dj .
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The transportation problem

I The problem that we need to solve is

minimize z =
∑m

i=1
∑n

j=1 cijxij ,

subject to


∑n
j=1 xij ≤ si for all i ,∑m
i=1 xij ≥ dj for all j ,

xij ≥ 0, integers.

I Since we have assumed that
∑m

i=1 si =
∑n

j=1 dj , it follows
that the ≤ and ≥ signs for the supply and the demand
constraints can be replaced by equalities. (See next slide for a
proof of this.)
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The transportation problem

I Proof that
∑n

j=1 xij ≤ si can be replaced by
∑n

j=1 xij = si :
If the actual supply

∑n
j=1 xij would be strictly less than si , then

the total amount shipped would be
∑

i ,j xij <
∑m

i=1 si = dj , so
that the total amount shipped would be less than the total
demand. This is clearly a contradiction.

I Therefore, we solve

minimize z =
∑m

i=1
∑n

j=1 cijxij ,

subject to


∑n
j=1 xij = si for all i ,∑m
i=1 xij = dj for all j ,

xij ≥ 0, integers.
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The transportation problem

I Since
∑m

i=1 si =
∑n

j=1 dj , one of the constraints is redundant,
and so we can remove any one of them.

I To see that the last constraint can be removed (for example),
we add all the supply constraints and obtain (since we can
change the order of summation)∑n

j=1
∑m

i=1 xij =
∑m

i=1
∑n

j=1 xij =
∑m

i=1 si =
∑n

j=1 dj .

Introduce all the demand constraints except the last one, and
sum them: ∑n−1

j=1
∑m

i=1 xij =
∑n−1

j=1 dj .

Subtracting these two equations, we obtain∑m
i=1 xin = dn,

which is the last constraint.
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The transportation problem

I If we would like to use the simplex method to solve the
transportation problem, we first remove one of the constraints.
Then we will get an integer optimal solution automatically (by
the Kruskaal–Hoffman theorem).

I The transport algorithm is based on the simplex method, but
takes advantage of the special structure of the transportation
problem.

I We will now learn the transportation algorithm, starting from
our previous concrete example.
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Example (Cont.)

Fill in the table in the following way: Start by writing the costs in
each corner of the boxes:

W1 W2 W3 W4

F1 5 7 9 6

120

F2 6 7 10 5

140

F3 7 6 8 1

100

100 60 80 120
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The transportation problem

Example (Cont.)

I We start by filling in the table with amounts to find an initial
basic feasible solution. There are different rules that one can
use for this. Right now we will use the simplest one, the
northwest rule. We will see some other rules later today.

I Start in the top left corner of the table, and fill in as much as
possible while stepping right and down until all the constraints
are met.

I Put zeros in the rest of the boxes.
I This procedure always gives a basic feasible solution.
I The resulting table can be seen in the next slide.
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The transportation problem

Example (Cont.)

W1 W2 W3 W4

F1 5 7 9 6

100 20 0 0 120

F2 6 7 10 5

0 40 80 20 140

F3 7 6 8 1

0 0 0 100 100

100 60 80 120
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The transportation problem

Example (Cont.)

I Now, we would like to modify the table. The current
transportation cost is
500+ 140+ 280+ 800+ 100+ 100 = 1920. Is this optimal?
Probably not, but we will soon see.

I Try to modify the table. What would happen if we increase
one of the unused routes from 0 to 1 and modify other used
routes so that feasibility is preserved?

I In the next slide, we show what happens if x21 is changed from
0 to 1.

I Remember that we are only allowed to change nonzero
numbers (except the first one).
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The transportation problem

Example (Cont.)

W1 W2 W3 W4

F1 5 7 9 6

99 21 0 0 120

F2 6 7 10 5

1 39 80 20 140

F3 7 6 8 1

0 0 0 100 100

100 60 80 120
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The transportation problem

Example (Cont.)

I The total transportation cost has changed from 1920 to
1920− 5+ 7− 7+ 6 = 1921.

I Since the cost became higher, it was not a good idea to
change that particular route.

I How do we know how to change the table so that the cost will
decrease? We will need some theory for this.

I We can use the dual problem for this. It is given by

maximize
∑m

i=1 vi +
∑n

j=1 wj ,

subject to{ vi + wj ≤ cij i1, . . . ,m, j = 1, . . . , n,
vi ,wj ∈ R (unrestricted).
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The transportation probem

Definition
The reduced costs are ĉij = cij − vi − wj

Note that the reduced costs would appear as slack variables when
solving the dual system with the simplex method.

I Use complementary slackness to find a solution to the dual
system. This solution will be infeasible if the solution of the
primal problem is not optimal. We need to solve

ĉijxij = 0 for all i , j .

I We conclude that ĉij = 0 if xij 6= 0. In the next slide, we will
try this out for our example.
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The transportation problem

Example (Cont.)

I The complemenatary slackness condition tells us which ĉij
have to be 0:

0 0
0 0 0

0

For these (i , j), we have cij = vi + wj .
I There are six such equations (since there are six zeros in the

table), but we have 7 variables, v1, . . . , v3 and w1, . . . ,w4.
This originates in the redundancy in the primal system.

I This does not cause any problem. We choose a value for one
of the variables, i.e. v1 = 0. Then we solve for the other six
variables: We get v1 = 0, v2 = 0, v3 = −4, w1 = 5, w2 = 7,
w3 = 10, w4 = 5.
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The transportation problem

Example

I Now that all the vi and wj have been found, we can compute
the rest of the ĉij , using ĉij = cij − vi − vj .

I The table for ĉij can be completed:

0 0 −1 1
1 0 0 0
6 3 2 0

I The interpretation of the reduced cost ĉij is the change of the
cost if that variable would increase by 1 (while adapting the
other variables to that the constraints still hold).

I For example, if the x21 variable would increase by 1, then the
transportation cost would increase by 1, just as we saw earlier.
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The transportation problem

Example (Cont.)

I With this interpretation, it is clear which route to change. We
need to choose one with a negative reduced cost.

I There is only one negative reduced cost, and so we change x13
from 0 to 1. Then the transportation table will be as on the
next slide.
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The transportation problem

Example (Cont.)

W1 W2 W3 W4

F1 5 7 9 6

100 19 1 0 120

F2 6 7 10 5

0 41 79 20 140

F3 7 6 8 1

0 0 0 100 100

100 60 80 120
I We should have changed x13 with 20 instead of just 1. Let’s

do this instead!
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The transportation problem

Example (Cont.)

W1 W2 W3 W4

F1 5 7 9 6

100 0 20 0 120

F2 6 7 10 5

0 60 60 20 140

F3 7 6 8 1

0 0 0 100 100

100 60 80 120
I The new cost is 1920− 1 · 20 = 1900, which is smaller.
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The transportation problem

Example (Cont.)

I This was one step in the transportation algorithm.
I Next, compute new reduced costs and choose a new incoming

variable.
I Repeat until all reduced costs are nonnegative. Then we have

reached an optimum.
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Initialization

I There are more efficient initialization rules than the northwest
rule that we have seen.

I If we choose an initial basic feasible solution which is close to
the optimal one, we may not have to perform so many
iterations in the actual algorithm, and hence we may be able
to solve the problem faster.

I We will describe two such rules: The minimal cost rule and
Vogel’s method.
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The minimal cost rule

In the minimal cost
rule, we examine
each factory in turn,
and try to transport
as cheaply as pos-
sible from that fac-
tory.
For our example, we
will get the follow-
ing initial transport
scheme which has
cost 2160.

W1 W2 W3 W4

F1 5 7 9 6

100 0 0 20 120

F2 6 7 10 5

0 40 0 100 140

F3 7 6 8 1

0 20 80 0 100

100 60 80 120
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Vogel’s method

1. For each row and column of the cost matrix, find the
difference between the smallest and the next smallest entry.

2. Select the row or column with the largest difference.
3. Allocate as much as possible for this route. If the row’s supply

(column’s demand), then disregard this row (column) from
further consideration.

4. Repeat from 1 until the table has been filled.
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Vogel’s method

The largest differ-
ence is 5 and can
be found in the third
row, therefore we fill
that row first. Re-
calculating the dif-
ferences after the
third row has been
filled, gives that the
differences are all 1,
except for the sec-
ond column, which
has difference 0. We
choose (arbitrarily)
to fill in the second
row before the first.

W1 W2 W3 W4

F1 5 7 9 6

0 40 80 0 120

F2 6 7 10 5

100 20 0 20 140

F3 7 6 8 1

0 0 0 100 100

100 60 80 120
The cost is 1940.

Sara Maad Sasane, Center for Mathematical Sciences, Lund University



Vogel’s method with Larson’s modification

I An improvement of Vogel’s method can be achieved if we
normalize the cost matrix according to
c ′ij = cij − 1

n

∑n
p=1 cpj −

1
m

∑m
q=1 ciq, i.e. c

′
ij is obtained from

cij by subtracting the average of the costs of the row and the
column in which it appears.

I The use Vogel’s method with the differences calculated using
c ′ij instead of cij .
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