Image Analysis - Lecture 4 Energy and Graph based Segmentation

Kalle Åström

November 14, 2013

Lecture 4

Contents

- Energy based segmentation
- The Mumford-Shah functional
- Graph cuts
- Mathematical morphology

For first part, see complementary slides.

Mathematical Morphology

Operations on binary images. Can be regarded as non-linear filtering.

 $A = \{ (x, y) \in \mathbb{Z}^2 | f(x, y) = 1 \}$ is considered as a subset of the image.

Definition

Let A and $B \subset \mathbb{Z}^2$.

The **translation** of *A* with $x = (x_1, x_2) \in \mathbb{Z}^2$ is defined as

$$(A)_x = \{ c \mid c = a + x, a \in A \}$$
.

The **reflection** of *A* is defined as

$$\hat{A} = \{ c \mid c = -a, a \in A \}$$
.

Definitions

Definition

The **complement** of *A* is defined as

$$A^c = \{ c \mid c \notin A \} .$$

The **difference** of *A* and *B* is defined as

$$A-B=\{c\,|\,c\in A,\ c\notin B\}=A\cap B^c.$$

Dilation

Let $B \subset \mathbb{Z}^2$ denote a **structure element**. (Usually B="a circle" with centre at the origin is chosen.)

Definition

The **dilatation** of *A* with *B* is defined by

$$A \oplus B = \{ x \mid (\hat{B})_x \cap A \neq \emptyset \} .$$

This can also be written

$$A \oplus B = \{ x \mid ((\hat{B})_x \cap A) \subseteq A \} .$$

The dilation of A with B can be seen as extending A with B.

Erosion

Definition

The **erosion** of *A* with *B* is defined by

$$A \ominus B = \{ x \mid (\hat{B})_X \subseteq A \}$$
.

The erosion of A with B can be seen as diminishing (eroding) A with B.

Opening

Definition

The **opening** of *A* with *B* is defined by

$$A \circ B = (A \ominus B) \oplus B$$
.

Opening = first erosion, then dilation.

- Gives smoother contours.
- Removes narrow passages.
- Eliminates thin parts.

Closing

Definition

The **Closing** of *A* with *B* is defined by

$$A \cdot B = (A \oplus B) \ominus B$$
.

Closing = first dilation, then erosion.

- Gives smoother contours.
- Fills up small parts.
- Fills up holes.

Review - Lecture 4

- Energy based segmentation
 - ► The Mumford-Shah functional
 - Two-phase Mumford-Shah
 - Statistical interpretation
- Graph cuts
 - Optimization tool with many applications
- Mathematical morphology