Home > wafo > wstats > wweibrnd.m

wweibrnd

PURPOSE ^

Random matrices a the Weibull distribution.

SYNOPSIS ^

R = wweibrnd(a,c,varargin)

DESCRIPTION ^

 WWEIBRND Random matrices a the Weibull distribution.
  
  CALL:  R = wweibrnd(a,c,sz)
  
  R     = a matrix of random numbers from the Weibull distribution
  a, c  = parameters of the Weibull distribution
     sz = size(R)    (Default common size of k,s and m0)
          sz can be a comma separated list or a vector 
          giving the size of R (see zeros for options).
 
  The Weibull distribution is defined by the distribution function
  
    F(x) = 1 - exp(-(x/a)^c), x>=0, a,b>0
  
  The random numbers are generated by the inverse method. 
 
  Example:
    R=wweibrnd(1,10,1,100);
    phat=wweibplot(R)
 
  See also  wweibinv

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

001 function R = wweibrnd(a,c,varargin)
002 %WWEIBRND Random matrices a the Weibull distribution.
003 % 
004 % CALL:  R = wweibrnd(a,c,sz)
005 % 
006 % R     = a matrix of random numbers from the Weibull distribution
007 % a, c  = parameters of the Weibull distribution
008 %    sz = size(R)    (Default common size of k,s and m0)
009 %         sz can be a comma separated list or a vector 
010 %         giving the size of R (see zeros for options).
011 %
012 % The Weibull distribution is defined by the distribution function
013 % 
014 %   F(x) = 1 - exp(-(x/a)^c), x>=0, a,b>0
015 % 
016 % The random numbers are generated by the inverse method. 
017 %
018 % Example:
019 %   R=wweibrnd(1,10,1,100);
020 %   phat=wweibplot(R)
021 %
022 % See also  wweibinv
023 
024 % Reference: Cohen & Whittle, (1988) "Parameter Estimation in Reliability
025 % and Life Span Models", p. 25 ff, Marcel Dekker.
026 
027 
028 % Tested on: matlab 5.3
029 % History: 
030 % revised pab 23.10.2000
031 %  - added comnsize
032 %  - added greater flexibility on the sizing of R
033 % rewritten ms 15.06.2000
034 
035 error(nargchk(2,inf,nargin))
036 if nargin==2,
037   [errorcode a c] = comnsize(a,c);
038 else
039   [errorcode a c] = comnsize(a,c,zeros(varargin{:}));
040 end
041 if errorcode > 0
042     error('a and c must be of common size or scalar.');
043 end
044 csiz=size(a);
045 R = wweibinv(rand(csiz),a,c);
046 
047 
048 
049 
050 
051

Mathematical Statistics
Centre for Mathematical Sciences
Lund University with Lund Institute of Technology

Comments or corrections to the WAFO group


Generated on Thu 06-Oct-2005 02:21:16 for WAFO by m2html © 2003