Home > wafo > wstats > wweibcdf.m

# wweibcdf

## PURPOSE

Weibull cumulative distribution function

## SYNOPSIS

F = wweibcdf(x,a,c)

## DESCRIPTION

``` WWEIBCDF Weibull cumulative distribution function

CALL:  F = wweibcdf(x,a,c);

F = distribution function evaluated at x
a, c = parameters

The Weibull distribution is defined by its cdf

F(x;a,c) = 1 -  exp(-(x/a)^c), x>=0, a,b>0

Some references refer to the Weibull distribution with
a single parameter, this corresponds to WWEIBPDF with a = 1.

Example:
x = linspace(0,6,200);
p1 = wweibcdf(x,1,1); p2 = wweibcdf(x,2,2);
plot(x,p1,x,p2)```

## CROSS-REFERENCE INFORMATION

This function calls:
 comnsize Check if all input arguments are either scalar or of common size. error Display message and abort function. nan Not-a-Number.
This function is called by:
 dist2dcdf Joint 2D CDF computed as int F(X1 dist2dfun is an internal function to dist2dcdf dist2dprb. jhvnlpdf Joint (Vcf,Hd) PDF for linear waves with a JONSWAP spectrum. jhvpdf Joint (Vcf,Hd) PDF for linear waves with a JONSWAP spectrum. mdist2dcdf Joint 2D CDF due to Plackett mdist2dpdf Joint 2D PDF due to Plackett given as f{x1}*f{x2}*G(x1,x2;Psi). ohhspdf Joint (Scf,Hd) PDF for linear waves with Ochi-Hubble spectra. ohhsspdf Joint (Scf,Hd) PDF linear waves in space with Ochi-Hubble spectra. thvpdf Joint (Vcf,Hd) PDF for linear waves with Torsethaugen spectra. weib2dcdf Joint 2D Weibull cumulative distribution function wweibfit Parameter estimates for Weibull data.

## SOURCE CODE

```001 function F = wweibcdf(x,a,c)
002 %WWEIBCDF Weibull cumulative distribution function
003 %
004 % CALL:  F = wweibcdf(x,a,c);
005 %
006 %        F = distribution function evaluated at x
007 %     a, c = parameters
008 %
009 %
010 % The Weibull distribution is defined by its cdf
011 %
012 %  F(x;a,c) = 1 -  exp(-(x/a)^c), x>=0, a,b>0
013 %
014 %   Some references refer to the Weibull distribution with
015 %   a single parameter, this corresponds to WWEIBPDF with a = 1.
016 %
017 % Example:
018 %   x = linspace(0,6,200);
019 %   p1 = wweibcdf(x,1,1); p2 = wweibcdf(x,2,2);
020 %   plot(x,p1,x,p2)
021
022
023 % Reference: Cohen & Whittle, (1988) "Parameter Estimation in Reliability
024 % and Life Span Models", p. 25 ff, Marcel Dekker.
025
026
027 % Tested on; Matlab 5.3
028 % History:
029 % revised oab 24.10.2000
031 % rewritten ms 15.06.2000
032
033
034 error(nargchk(3,3,nargin))
035
036 [errorcode, x, a, c] = comnsize (x,a, c);
037 if (errorcode > 0)
038   error ('x, a and c must be of common size or scalar');
039 end
040
041 F=zeros(size(x));
042
043 ok = ((c > 0)  & (a > 0));
044
045 k = find (x>=0&ok);
046 if any (k)
047   F(k)=1-exp(-(x(k)./a(k)).^c(k));
048 end
049
050 k1 = find (~ok);
051 if any (k1)
052   tmp=NaN;
053   F(k1) = tmp(ones(size(k1)));
054 end
055
056
057
058
059
060
061
062
063```

Mathematical Statistics
Centre for Mathematical Sciences
Lund University with Lund Institute of Technology

Comments or corrections to the WAFO group

Generated on Thu 06-Oct-2005 02:21:16 for WAFO by m2html © 2003