Home > wafo > wstats > wexpcdf.m

wexpcdf

PURPOSE ^

Exponential cumulative distribution function

SYNOPSIS ^

F = wexpcdf(x,m);

DESCRIPTION ^

 WEXPCDF Exponential cumulative distribution function 
  
  CALL:  F = wexpcdf(x,m); 
  
         F = distribution function evaluated at x 
         m = mean 
  
  The Exponential distribution is defined by its cdf 
  
         F(x)=1-exp(-x/m), x>=0, m>0. 
   
  Example:  
    x = linspace(0,6,200); 
    p1 = wexpcdf(x,1); p2 = wexpcdf(x,2); 
    plot(x,p1,x,p2)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

001 function F = wexpcdf(x,m); 
002 %WEXPCDF Exponential cumulative distribution function 
003 % 
004 % CALL:  F = wexpcdf(x,m); 
005 % 
006 %        F = distribution function evaluated at x 
007 %        m = mean 
008 % 
009 % The Exponential distribution is defined by its cdf 
010 % 
011 %        F(x)=1-exp(-x/m), x>=0, m>0. 
012 %  
013 % Example:  
014 %   x = linspace(0,6,200); 
015 %   p1 = wexpcdf(x,1); p2 = wexpcdf(x,2); 
016 %   plot(x,p1,x,p2) 
017  
018 % Reference: Johnson, Kotz and Balakrishnan (1994) 
019 % "Continuous Univariate Distributions, vol. 1", p. 494 ff 
020 % Wiley 
021  
022 % Tested on; Matlab 5.3 
023 % History:  
024 % revised pab Dec2003 
025 % fixed abug: k1 ->k3 
026 % revised pab 24.10.2000 
027 %  - added comnsize, nargchk 
028 % added ms 15.06.2000 
029  
030 error(nargchk(2,2,nargin)) 
031 [errorcode x m] = comnsize(x,m); 
032 if errorcode > 0 
033     error('x and m must be of common size or scalar.'); 
034 end 
035  
036 % Initialize f to zero. 
037 F = zeros(size(x)); 
038  
039 k=find(x >= 0 & m>0); 
040 if any(k), 
041   F(k)=1-exp(-x(k)./m(k)); 
042 end 
043  
044 k3 = find(m<=0);      
045 if any(k3) 
046   tmp = NaN; 
047   F(k3) = tmp(ones(size(k3))); 
048 end 
049

Mathematical Statistics
Centre for Mathematical Sciences
Lund University with Lund Institute of Technology

Comments or corrections to the WAFO group


Generated on Thu 06-Oct-2005 02:21:16 for WAFO by m2html © 2003