Home > wafo > wstats > dist2dprb.m

# dist2dprb

## PURPOSE

returns the probability for rectangular regions.

## SYNOPSIS

[y ,eps1] = dist2dprb(phat,x1lo,x1up,x2lo,x2up)

## DESCRIPTION

``` DIST2DPRB returns the probability for rectangular regions.

CALL: [P tol] = dist2dprb(phat,x1lo,x1up,x2lo,x2up);

P    = probability
tol  = absolute tolerance, i.e., abs(int-intold)
phat = parameter structure (see dist2dfit)
xilo = lower integration limits
xiup = upper integration limits

The size of P is the common size of XILO and XIUP.

Example
x1=linspace(0,10)';
phat.x={[x1,exp(-0.1*x1)] 2 };
phat.dist={'rayl','rayl'};
dist2dprb(phat,1,2,1,2)
f = dist2dpdf2(x1,x1,phat);
pdfplot(f); hold on,
plot([ 1 1 2 2 1],[1 2 2 1 1]), hold off

## CROSS-REFERENCE INFORMATION

This function calls:
 gaussq2d Numerically evaluates a 2D integral using Gauss quadrature. error Display message and abort function.
This function is called by:

## SOURCE CODE

```001 function  [y ,eps1] = dist2dprb(phat,x1lo,x1up,x2lo,x2up)
002 %DIST2DPRB returns the probability for rectangular regions.
003 %
004 % CALL: [P tol] = dist2dprb(phat,x1lo,x1up,x2lo,x2up);
005 %
006 %   P    = probability
007 %   tol  = absolute tolerance, i.e., abs(int-intold)
008 %   phat = parameter structure (see dist2dfit)
009 %   xilo = lower integration limits
010 %   xiup = upper integration limits
011 %
012 %  The size of P is the common size of XILO and XIUP.
013 %
014 % Example
015 %  x1=linspace(0,10)';
016 %  phat.x={[x1,exp(-0.1*x1)] 2 };
017 %  phat.dist={'rayl','rayl'};
018 %  dist2dprb(phat,1,2,1,2)
019 %  f = dist2dpdf2(x1,x1,phat);
020 %  pdfplot(f); hold on,
021 %  plot([ 1 1 2 2 1],[1 2 2 1 1]), hold off
022 %
024
025
026 % tested on: matlab 5.2
027 % history:
028 % revised pab 27.10.2000
029 %  - added example text
030 %  Per A. Brodtkorb 28.10.98
031
032 error(nargchk(5,5,nargin))
033 %defining global variables
034 global PHAT CONDON
035 condon=CONDON; % save old value
036 CONDON=1;
037 if (nargin < 5),
038   error('Requires 5 input arguments.');
039 end
040 eps2=1e-5;%relative tolerance
041 % nit toolbox function
042 [y eps1] = gaussq2d('dist2dfun',x1lo,x1up,x2lo,x2up,eps2);
043 CONDON=condon; %restore the default value
044
045
046```

Mathematical Statistics
Centre for Mathematical Sciences
Lund University with Lund Institute of Technology

Comments or corrections to the WAFO group

Generated on Thu 06-Oct-2005 02:21:16 for WAFO by m2html © 2003