Home > wafo > wavemodels > ohhgparfun.m

ohhgparfun

PURPOSE ^

Wave height, Hd, distribution parameters for Ochi-Hubble spectra.

SYNOPSIS ^

[A0,B0,C0]= ohhgparfun(Hm0,def,dim)

DESCRIPTION ^

 OHHGPARFUN Wave height, Hd, distribution parameters for Ochi-Hubble spectra. 
  
  CALL [a b c] = ohhgparfun(Hm0,def,dim) 
  
  Hm0 = significant wave height [m]. 
  def = defines the parametrization of the spectral density (default 1) 
        1 : The most probable spectrum  (default) 
        2,3,...11 : gives 95% Confidence spectra 
  dim = 'time'  : Hd distribution parameters in time (default) 
        'space' : Hd distribution parameters in space 
  
   OHHGPARFUN returns the Generalized gamma distribution parameters which 
   approximates the marginal PDF of Hd/Hrms, i.e., 
   zero-downcrossing wave height, for a Gaussian process with a Bimodal 
   Ochi-Hubble spectral density (ohspec2). The empirical parameters of 
   the model is fitted by least squares to simulated Hd data for 24 
   classes of Hm0. Between 50000 and 150000 zero-downcrossing waves were 
   simulated for each class of Hm0 for DIM=='time'. 
   Between 50000 and 300000 zero-downcrossing waves were 
   simulated for each class of Hm0 for DIM=='space'. 
   OHHGPARFUN is restricted to the following range for Hm0:  
    0 < Hm0 [m] < 12,  1 <= def < 11,  
   
   Example: 
   Hm0 = 6;def = 8;Hrms = Hm0/sqrt(2); 
   [a b c] = ohhgparfun(Hm0,def); 
   h = linspace(0,4*Hrms)';  
   f = wggampdf(h/Hrms,a,b,c)/Hrms; 
   plot(h,f) 
   
   See also  ohhvpdf

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [A0,B0,C0]= ohhgparfun(Hm0,def,dim) 
0002 %OHHGPARFUN Wave height, Hd, distribution parameters for Ochi-Hubble spectra. 
0003 % 
0004 % CALL [a b c] = ohhgparfun(Hm0,def,dim) 
0005 % 
0006 % Hm0 = significant wave height [m]. 
0007 % def = defines the parametrization of the spectral density (default 1) 
0008 %       1 : The most probable spectrum  (default) 
0009 %       2,3,...11 : gives 95% Confidence spectra 
0010 % dim = 'time'  : Hd distribution parameters in time (default) 
0011 %       'space' : Hd distribution parameters in space 
0012 % 
0013 %  OHHGPARFUN returns the Generalized gamma distribution parameters which 
0014 %  approximates the marginal PDF of Hd/Hrms, i.e., 
0015 %  zero-downcrossing wave height, for a Gaussian process with a Bimodal 
0016 %  Ochi-Hubble spectral density (ohspec2). The empirical parameters of 
0017 %  the model is fitted by least squares to simulated Hd data for 24 
0018 %  classes of Hm0. Between 50000 and 150000 zero-downcrossing waves were 
0019 %  simulated for each class of Hm0 for DIM=='time'. 
0020 %  Between 50000 and 300000 zero-downcrossing waves were 
0021 %  simulated for each class of Hm0 for DIM=='space'. 
0022 %  OHHGPARFUN is restricted to the following range for Hm0:  
0023 %   0 < Hm0 [m] < 12,  1 <= def < 11,  
0024 %  
0025 %  Example: 
0026 %  Hm0 = 6;def = 8;Hrms = Hm0/sqrt(2); 
0027 %  [a b c] = ohhgparfun(Hm0,def); 
0028 %  h = linspace(0,4*Hrms)';  
0029 %  f = wggampdf(h/Hrms,a,b,c)/Hrms; 
0030 %  plot(h,f) 
0031 %  
0032 %  See also  ohhvpdf  
0033  
0034  
0035 % History: 
0036 % by pab 29.01.2001 
0037  
0038 error(nargchk(2,3,nargin)) 
0039 if nargin<3|isempty(dim), dim = 'time';end 
0040 if nargin<2|isempty(def), def = 1;end  
0041  
0042 if Hm0>12| Hm0<=0  
0043   disp('Warning: Hm0 is outside the valid range') 
0044   disp('The validity of the parameters returned are questionable') 
0045 end 
0046  
0047 if def>11|def<1  
0048   Warning('DEF is outside the valid range') 
0049   def = mod(def-1,11)+1; 
0050 end 
0051  
0052 pardef =1; 
0053 switch pardef 
0054   case 1, 
0055     if strncmpi(dim,'s',1),  % wave height distribution in space 
0056       % Wggampdf distribution parameters as a function of Hm0 
0057       % Best fit by smoothing spline  
0058       % Then approximate the spline with a rational polynomial 
0059                 
0060       da1={[ -0.00004138090870   0.00109430794436  -0.00269440736780 ... 
0061           -0.06705897283924  -0.55164440895527],... 
0062         [0.00004937786498  -0.00134400481142   0.00676573945561 ... 
0063           0.00208710869648  -0.31102727301470],... 
0064         [-0.07779895000407  -0.01541613940921],... 
0065         [0.00012851785795  -0.00714115752747   0.05114781130635 ... 
0066           -0.17663963262922],... 
0067         [0.00332180691448  -0.05666446616529   0.31714325506504 ... 
0068           -0.55816731477282],... 
0069         [-0.00111352210231   0.00673694644824   0.06414268764116 ... 
0070           -0.54807790917122],... 
0071         [-0.00061700196531   0.01149080934720  -0.06699565421063 ... 
0072           -0.16311703448820],... 
0073         [-0.00001475352999   0.00040291282700  -0.00295454783865 ... 
0074           0.00397174812619  -0.01538667731742  -0.33966924696171],... 
0075         [-0.00001061573392   0.00044435203176  -0.00497643732486 ... 
0076           0.01467622201442  -0.04568798057552  -0.37832649729316],... 
0077         [-0.00100368236647   0.00084782401829   0.08554210278523 ... 
0078           -0.48800043496091],... 
0079         [-0.00091995034005   0.00636754206764   0.07532818993481 ... 
0080           -0.66017075731642]}; 
0081       da2={[     1],... 
0082         [0.01444657322783  -0.18050127512374   1],... 
0083         [-0.00000551632145   0.00024179389257  -0.00405951378831 ... 
0084           0.03460258829729  -0.14499641228538   0.25097182572877 ... 
0085           1],...         
0086         [0.02094653009449  -0.21580097808702   1],... 
0087         [0.00000039824156  -0.00001401589784   0.00017538598241 ... 
0088           -0.00087595887249   0.02173043069134  -0.27896326832222 ... 
0089           1],... 
0090         [0.00027793890241   0.01250747301868  -0.22143627593439 ... 
0091           1],... 
0092         [0.00018201646553   0.00498464954163  -0.13196545891600 ... 
0093           1],... 
0094         [0.01762406173827   1],... 
0095         [0.01893329704474  -0.14577267850356   1],... 
0096         [0.00016451696260  -0.00313094910565   0.04262525186595 ... 
0097           -0.30975235923116   1],... 
0098         [0.00084470714310  -0.00044404366986  -0.15631462629050 ... 
0099           1]}; 
0100       db1={[   0.00002786726541  -0.00075751430599   0.00223834654260 ... 
0101           0.01054367751133   0.10539758995860],... 
0102         [-0.00005472405514  -0.00017765436849  -0.00103888994770 ... 
0103           0.07270379185212],... 
0104         [-0.00035828959539  -0.00021346175807   0.03679282545071 ... 
0105           -0.25646599618411],... 
0106         [-0.00033639133259   0.00467251743336  -0.01864550369819 ... 
0107           -0.00578836659867],... 
0108         [-0.00002567795716   0.00072047013458  -0.00882477037641 ... 
0109           0.05131654500007  -0.09227600377294  -0.18801238885291],... 
0110         [   0.10350498693227],... 
0111         [  -0.00246180597282   0.02589321523550 ... 
0112           0.00907312834779],... 
0113         [-0.00037609466003   0.00450296629496  -0.02220335764921 ... 
0114           0.03778920247594],... 
0115         [-0.00003116726300   0.00016129446028  -0.00054419987444 ... 
0116           -0.00138211697551   0.15107822446509],... 
0117         [-0.00071749136602   0.01239103711323  -0.06353761070440 ... 
0118           0.13667553417682],... 
0119         [-0.00023012665524  -0.00316272717879   0.03161663379982]}; 
0120       db2={[1],... 
0121         [0.00630055272128  -0.13060394885807   1],... 
0122         [0.00675670048886  -0.09157124225316   1],... 
0123         [0.01447609327850  -0.18780870215326   1],... 
0124         [0.00012506959353  -0.00399534285493   0.05568791406103 ... 
0125           -0.37522310581758   1],... 
0126         [-0.00000889474966   0.00039067088782  -0.00526511202274 ... 
0127           0.03605007085256  -0.16822575305751   1],... 
0128         [0.00597564032776  -0.10776631476009   1],... 
0129         [0.00783990826359  -0.13379412280046   1],... 
0130         [0.01030151384679  -0.13410883880079   1],... 
0131         [0.00038948731188  -0.01126916677156   0.12437510447577 ... 
0132           -0.53570433281264   1],... 
0133         [0.00665362466697  -0.12269914566155   1]}; 
0134        
0135       dc1={[   0.00002627362126  -0.00063812306976   0.00114120300792 ... 
0136           0.00886321919773   0.84155790455689],... 
0137         [-0.00013741465763   0.00700935191663  -0.11536719885091 ... 
0138           0.86521574098404],... 
0139         [-0.00032560353126   0.00663077427031  -0.04671406141137 ... 
0140           0.55889438436586],... 
0141         [-0.00036432872797   0.01719976738176  -0.17716437338482 ... 
0142           0.79397122217912],... 
0143         [-0.07607968213050   0.53647655665311],... 
0144         [-0.00001755184498   0.00046265130528   0.00480698598445 ... 
0145           -0.14808812508160   0.84780942084456],... 
0146         [0.00292089451560  -0.07387219916706   0.84761929045052],... 
0147         [-0.00044854206584   0.01387594105541  -0.14747232736858 ... 
0148           0.81184247660099],... 
0149         [-0.00005017276400   0.00045086394299   0.01172143963145 ... 
0150           -0.15481844733632   0.91466994240931],... 
0151         [-0.00083399294307   0.03173700856505  -0.29875868719042 ... 
0152           0.90916386040348],... 
0153         [0.00503410266470  -0.10045149188202   0.81028961148079]}; 
0154       dc2={[1],... 
0155         [0.00708771085200  -0.13075895458907   1],... 
0156         [0.00815235594758  -0.08754229008767   1],... 
0157         [0.01530566856719  -0.19610393150465   1],... 
0158         [0.00000213557112  -0.00007247268251   0.00074418207415 ... 
0159           -0.00268709541198   0.01988142634668   1],... 
0160         [0.01098844298808  -0.19395166448863   1],... 
0161         [0.00614723653340  -0.11162270280918   1],... 
0162         [0.01019120537993  -0.14977053903121   1],... 
0163         [0.01585353393664  -0.18310375006209   1],... 
0164         [0.00006216421770  -0.00196107382326   0.04077825055198 ... 
0165           -0.33903949832675   1],... 
0166         [0.00669091523183  -0.12406192574979   1]}; 
0167     else 
0168       % wave height distribution in time 
0169       % Wggampdf distribution parameters as a function of Hm0 
0170       % Best fit by smoothing spline  
0171       % Then approximate the spline with a rational polynomial 
0172       da1={ [ -0.00021090006386   0.00099934574943  -0.00900432806455 ... 
0173           0.05360872962522  -0.13820834412204],... 
0174         [-0.00084087472436   0.01342836937721  -0.07021482301815 ... 
0175           0.10439996243985],... 
0176         [-0.00411971761194   0.05373598422752  -0.18954063934808],... 
0177         [-0.00012474421100   0.00250396234414  -0.01801864263205 ... 
0178           0.04851788377177  -0.02919751683519],... 
0179         [0.00028241591775  -0.00383579194909   0.08174348963620 ... 
0180           -1.32724254419412],... 
0181         [-0.00017670476778  -0.00666915903614   0.04795062219298 ... 
0182           -0.13645139083902],... 
0183         [-0.02424372646941   0.09954627397581],... 
0184         [-0.06133903253669   0.05728131281798],... 
0185         [-0.00157851613462   0.02089581891395  -0.10894624869976 ... 
0186           0.19453964201717],... 
0187         [-0.01725452144688   0.03330237828587],... 
0188         [0.00000717915718  -0.00019257298441   0.00147154032200 ... 
0189           -0.00259863686010   0.00035395444663  -0.64480480511488]}; 
0190       da2={[ 0.05995605951733  -0.41068759358531   1],... 
0191         [0.00000751042631  -0.00028613416391   0.00328291899811 ... 
0192           0.00442091959847  -0.24443844451609   1],... 
0193         [0.00000430688254  -0.00009106448814  -0.00099869003370 ... 
0194           0.04154886980845  -0.35890809950952   1],... 
0195         [0.00023935833522  -0.00591735713261   0.06798723820754 ... 
0196           -0.38982961431090   1],... 
0197         [0.00757595539218  -0.10398127181499   1],... 
0198         [-0.00072248110815   0.02596637975011  -0.18269842814972 ... 
0199           1],... 
0200         [-0.00000174711174   0.00008201186938  -0.00150525140157 ... 
0201           0.01343865711936  -0.05780002313203   0.09429348230678 ... 
0202           -0.06929032245607   1],... 
0203         [0.00000208895738  -0.00009609847933   0.00175625002335 ... 
0204           -0.01601454504333   0.07354831049560  -0.14197461088754 ... 
0205           0.05078972211934   1],... 
0206         [-0.00031339835776   0.02438458742232  -0.24117432192535 ... 
0207           1],... 
0208         [0.00000066080839  -0.00003627357887   0.00080940846999 ... 
0209           -0.00943978109394   0.06107606819380  -0.20327993732412 ... 
0210           0.16542626434793   1],... 
0211         [1]}; 
0212       db1={[ 0.00022921830947   0.00159925872577  -0.01667704061973 ... 
0213           0.04662592566503],... 
0214         [0.00057178028982  -0.00890122096380   0.04679472490838 ... 
0215           -0.08028139564541],... 
0216         [0.00108489203287  -0.01346348585841   0.05229228752301],... 
0217         [0.00006368692453  -0.00130819737566   0.00915200813786 ... 
0218           -0.02057643921056  -0.00686231640066],... 
0219         [-0.00036032275155   0.00344363592639  -0.05318676610821 ... 
0220           0.37800784358293],... 
0221         [0.00039750363777   0.00118081867213  -0.01920573851960 ... 
0222           0.04255527451428],... 
0223         [-0.00000026023512   0.00000971125710  -0.00013658049789 ... 
0224           0.00089291632946  -0.00253312265455   0.00240791462920 ... 
0225           0.01221834880497  -0.07673840034416],... 
0226         [0.03330461771087  -0.06407470597208],... 
0227         [0.00099308980246  -0.01367631695322   0.06928373414460 ... 
0228           -0.12532575027873],... 
0229         [0.00000533318040  -0.00006666739193   0.00004963589207 ... 
0230           0.01075821412260  -0.04329177213143],... 
0231         [0.00308340943994  -0.04643773034627   0.22197554243575]}; 
0232       db2={[  -0.00173474354751   0.05621596437959  -0.34427151101243 ... 
0233           1],... 
0234         [-0.00058223738613   0.03192289667137  -0.32567254582345 ... 
0235           1],... 
0236         [0.00005760340117  -0.00273523846872   0.04818874703932 ... 
0237           -0.35440595407476   1],... 
0238         [0.00029278914954  -0.00683914266105   0.07249650256932 ... 
0239           -0.39352564537810   1],... 
0240         [0.00638543230930  -0.10764451762078   1],... 
0241         [0.02648227174070  -0.15567637863345   1],... 
0242         [1],... 
0243         [-0.00000409424117   0.00012066238812  -0.00102643428320 ... 
0244           -0.00104437419007   0.05110946289237  -0.11321681855217 ... 
0245           1],... 
0246         [0.00025276069418   0.02452366546367  -0.26440802697312 ... 
0247           1],... 
0248         [0.01001142751412  -0.16817656582429   1],... 
0249         [0.01372171990510  -0.20396436206820   1]}; 
0250       dc1={[ -0.00133929519239   0.04730786996996  -0.29305862191180 ... 
0251           0.81513950477133],... 
0252         [-0.00001694036044  -0.00020962139068   0.01936017704239 ... 
0253           -0.21457808551888   0.71651822962780],... 
0254         [-0.00000006539271  0.00000289050182  -0.00005039376355 ... 
0255           0.00043764989508  -0.00196285715424   0.00431652413026 ... 
0256           -0.00327762303122   0.00162843010482   0.83762164036746],... 
0257         [0.00029465993453  -0.00668829521454   0.06554242495875 ... 
0258           -0.32893277935724   0.78933481630309],... 
0259         [-0.00042306886854   0.01169315489889  -0.15234924008196 ... 
0260           1.07947721976127],... 
0261         [0.00008612163029   0.01913711028089  -0.15116777911992 ... 
0262           0.80820390970050],... 
0263         [-0.00000009184030   0.00000539190949  -0.00009430392625 ... 
0264           0.00082888134980   0.00416708981125  -0.14314823340722 ... 
0265           0.72026361378988],... 
0266         [0.02184596827502  -0.24092029708847   0.73236399219820],... 
0267         [0.00087239619444   0.00317550897707  -0.12537252077704 ... 
0268           0.64440899045430],... 
0269         [0.00000520709551  -0.00007316412551   0.00778043773746 ... 
0270           -0.13068465733412   0.73793632047669],... 
0271         [-0.00000358589802   0.00009488464816  -0.00071800099087 ... 
0272           0.00082796715513  -0.00010259391795   1.00634386416504]}; 
0273       dc2={[  -0.00191628271245   0.05897119249625  -0.35851961723834 ... 
0274           1],... 
0275         [-0.00110670951778   0.03475616787178  -0.32343924869809 ... 
0276           1],... 
0277         [1],... 
0278         [0.00029664024285  -0.00687396790239   0.07160724547061 ... 
0279           -0.38909506719167   1],... 
0280         [0.00847891734366  -0.11511722816039   1],... 
0281         [0.02110863910760  -0.16839461856688   1],... 
0282         [0.01221660139132  -0.21791917424613   1],... 
0283         [-0.00000063445622   0.00002035073383  -0.00019255458144 ... 
0284           -0.00030177314761   0.04026875326209  -0.36308545539702 ... 
0285           1],... 
0286         [0.00024856242058   0.01796990025221  -0.24248924588261 ... 
0287           1],... 
0288         [0.01017663527287  -0.18166946821495   1],... 
0289         [1]}; 
0290     end    
0291     A0 = exp(polyval(da1{def},Hm0)./polyval(da2{def},Hm0)); 
0292     B0 = exp(polyval(db1{def},Hm0)./polyval(db2{def},Hm0)); 
0293     C0 = exp(polyval(dc1{def},Hm0)./polyval(dc2{def},Hm0)); 
0294  case 2, 
0295    if strncmpi(dim,'s',1) 
0296       % Waveheight distribution in space 
0297       global OHHSGPAR 
0298       if isempty(OHHSGPAR) 
0299     OHHSGPAR = load('ohhsgpar.mat'); 
0300       end 
0301       % Generalized Gamma  distribution parameters as a function of Hm0  
0302       A00 = OHHSGPAR.A00s; 
0303       B00 = OHHSGPAR.B00s; 
0304       C00 = OHHSGPAR.C00s; 
0305       Hm00 = OHHSGPAR.Hm0; 
0306     else 
0307       % wave height distribution in time 
0308       global OHHGPAR 
0309       if isempty(OHHGPAR) 
0310     OHHGPAR = load('ohhgpar.mat'); 
0311       end 
0312       % logarithm of Generalized Gamma  distribution parameters as a function of Tp, Hm0  
0313       A00 = OHHGPAR.A00s; 
0314       B00 = OHHGPAR.B00s; 
0315       C00 = OHHGPAR.C00s;     
0316       Hm00 = OHHGPAR.Hm0; 
0317     end 
0318      
0319     if 0, 
0320       method = '*cubic'; 
0321       A0 = exp(interp1(Hm00,A00(:,def),Hm0,method)); 
0322       B0 = exp(interp1(Hm00,B00(:,def),Hm0,method)); 
0323       C0 = exp(interp1(Hm00,C00(:,def),Hm0,method)); 
0324     else 
0325       A0 = exp(smooth(Hm00,(A00(:,def)),1,Hm0)); 
0326       B0 = exp(smooth(Hm00,(B00(:,def)),1,Hm0)); 
0327       C0 = exp(smooth(Hm00,C00(:,def),1,Hm0)); 
0328     end 
0329  
0330 end 
0331  
0332  
0333 return 
0334  
0335  
0336 % old parameters for Hd in space 
0337  
0338 da1={[0.00000002406418  -0.00000145864213   0.00002600427250 ... 
0339           -0.00005326802443  -0.00338753223636   0.04276396672557 ... 
0340           -0.22397486790581   0.55397003503315  -0.55201813718275],... 
0341         [-0.00000676965122   0.00020200920966  -0.00205838398409 ... 
0342           0.00019797655476   0.08016410340483  -0.31152517839130],.... 
0343         [-0.00000476260375   0.00019130072039  -0.00371521972888 ... 
0344           0.02386336139550  -0.05970268563274  -0.01617628729118],... 
0345         [0.00024283057775  -0.00833239642085   0.05582385447507 ... 
0346           -0.17648495861337],.... 
0347         [0.00007720352467  -0.00238040941550   0.02862824083340 ... 
0348           -0.16839558114694   0.48846396125956  -0.55750790378169],... 
0349         [-0.00111421509970   0.00674053248615   0.06417458439903 ... 
0350           -0.54809442793967],... 
0351         [-0.00061655028333   0.01149116196906  -0.06700465624727 ... 
0352           -0.16306675248567],... 
0353         [-0.00000008790850   0.00000494031449  -0.00011873707829 ... 
0354           0.00158201747763  -0.01252778901847   0.05903244219134 ... 
0355           -0.16295659853979  0.27679041787843  -0.33920506275510],.... 
0356         [0.00019944972975  -0.00387246294051   0.00871836622093 ... 
0357           0.07525104478615  -0.37975077120345],... 
0358         [-0.00011980183052   0.00111964000381  -0.01215116602786 ... 
0359           0.09008588020134  -0.48851968906629],... 
0360         [-0.00091863878485   0.00636619673737   0.07526302723788 ... 
0361           -0.66019998776218  ]}; 
0362        
0363        
0364       da2={[0.00000010060522  -0.00000550366553   0.00014160956534 ... 
0365           -0.00221926674196   0.02234423849354  -0.14211836784142 ... 
0366           0.54260149839428  -1.12617270843975   1],... 
0367         [0.00000337580209   0.00008243933002  -0.00451274033888 ... 
0368           0.06863436347737  -0.42296672448054   1],.... 
0369         [0.00003069759331  -0.00049421544034   0.00114689371645 ... 
0370           0.04477822583039  -0.36818127349426   1],... 
0371         [-0.00056051865784   0.02794081232903  -0.24546163340283 ... 
0372           1],... 
0373         [0.00000016332729   0.00047498038386  -0.01307670200874 ... 
0374           0.13215678946670  -0.58743354090320   1],... 
0375         [0.00027827266513   0.01251000719516  -0.22149079152022 ... 
0376           1],... 
0377         [0.00018130364106   0.00498960156317  -0.13199762979401 ... 
0378           1],... 
0379         [0.00000033412316  -0.00001877261316   0.00044090470098 ... 
0380           -0.00563540723674   0.04240614918096 -0.19001070154163 ... 
0381           0.50385657013424  -0.84025825331257   1],.... 
0382         [0.00025709183125  -0.00617747756904   0.07958557077854 ... 
0383           -0.44069798439265   1],... 
0384         [0.00035572688653  -0.00647843130859   0.06126897862841 ... 
0385           -0.31208814468029   1],... 
0386         [0.00084329792629  -0.00044723971576  -0.15620403936717 ... 
0387           1]}; 
0388       db1={[-0.00082074327622   0.00310711191739   0.02983321893646 ... 
0389           0.10512685294208],... 
0390         [-0.00001651586126   0.00023940502444   0.00036988943260 ... 
0391           -0.01852343109453   0.07182618187072],... 
0392         [-0.00016426460078   0.00351053772758  -0.03264452977275 ... 
0393           0.14045211622147  -0.25729061669762],... 
0394         [-0.00033440303631   0.00432232613154  -0.01629785223659 ... 
0395           -0.00632348250638],... 
0396         [-0.00002864536325   0.00079788325346  -0.00933896867008 ... 
0397           0.05162357092566  -0.08979872153610  -0.18807381931685],... 
0398         [-0.00001292516199   0.00022611026761   0.00130613541462 ... 
0399           -0.02758546678738   0.10440258704625],... 
0400         [-0.00246211139569   0.02589825879106   0.00905229907941],.... 
0401         [  -0.00037781795743   0.00450525318031  -0.02220074480905 ... 
0402           0.03782125966200],.... 
0403         [-0.00005365190329   0.00061220198257   0.00106106554759 ... 
0404           -0.03638237470114   0.15043660450147],.... 
0405         [-0.00002448300168   0.00009317073942   0.00480245117187 ... 
0406           -0.04497407339539   0.13588148121929],... 
0407         [-0.00023013152466  -0.00316576689047   0.03163238265516]}; 
0408       db2={[0.00098484194373  -0.01380614814547   0.17980395966828 ... 
0409           1],.... 
0410         [0.00010708975223  -0.00396929506746   0.05929719875494 ... 
0411           -0.39612320450062   1],.... 
0412         [0.00025838476420  -0.00767382409100   0.09587505689743 ... 
0413           -0.47907524905693   1],... 
0414         [  -0.00055609648946   0.02656272782926  -0.24343322979930 ... 
0415           1],... 
0416         [-0.00000090496443   0.00017295210287  -0.00483418013997 ... 
0417           0.06123112719430  -0.38640594789832   1],... 
0418         [0.00018726679267  -0.00507562033837   0.06605806753868 ... 
0419           -0.40364596143106   1],... 
0420         [0.00597566091081  -0.10777062098535   1],.... 
0421         [0.00002127246670   0.00732906517042  -0.13023170576265 ... 
0422           1],... 
0423         [0.00012522165992  -0.00416789302263   0.06029772023606 ... 
0424           -0.37903124030781   1],... 
0425         [0.00020634188557  -0.00610326675692   0.07715475800899 ... 
0426           -0.42169072765716   1],.... 
0427         [0.00665456046645  -0.12267260104256   1]}; 
0428       dc1={[  -0.00036807850265   0.00545545695466   0.01352919193262 ... 
0429           0.84197423534212],... 
0430         [-0.00050432820881   0.01708120740048  -0.19876997429965 ... 
0431           0.86435448125891],... 
0432         [-0.00033914940618   0.00795116688552  -0.06846531465339 ... 
0433           0.55840198615046],... 
0434         [-0.00071488796998   0.02486449026128  -0.21041580231524 ... 
0435           0.79355468847845],... 
0436         [-0.00009892859012   0.00276591546072  -0.03002633457402 ... 
0437           0.15931972337914  -0.43161505755054   0.53570434002641],.... 
0438         [0.00010619165436  -0.00347018536796   0.05224169636433 ... 
0439           -0.34338472358767   0.84860394264648],... 
0440         [0.00292046061510  -0.07387190243640   0.84760512059299],... 
0441         [-0.00044089964679   0.01369119753544  -0.14634713714506 ... 
0442           0.81184916823722],... 
0443         [0.00002984289196  -0.00214159202410   0.04287625923275 ... 
0444           -0.30428570545530   0.91417829223642],... 
0445         [0.00013890296940  -0.00488554788279   0.06763232035215 ... 
0446           -0.38511409814644   0.90958685139151],... 
0447         [0.00503526324868  -0.10045012206915   0.81030061018108]}; 
0448       dc2={[0.00019399967847   0.00463671477881   0.00678275747181 ... 
0449           1],... 
0450         [-0.00055113183662   0.01961448142377  -0.22929214637072 ... 
0451           1],... 
0452         [-0.00019930915226   0.01208390021168  -0.12871437482774 ... 
0453           1],... 
0454         [-0.00041983098003   0.02513894419236  -0.23999047344698 ... 
0455           1],... 
0456         [0.00001515022471   0.00099690344938  -0.02498697386844 ... 
0457           0.19572691863159  -0.65081992606434   1],.... 
0458         [0.00016992835272  -0.00504226547517   0.06822048124694 ... 
0459           -0.42064421003533   1],... 
0460         [0.00614680320329  -0.11162528205048   1],... 
0461         [0.00000891584989   0.00996459000728  -0.14831429085591 ... 
0462           1],.... 
0463         [0.00010585667875 -0.00337757377606   0.05286633398607 ... 
0464           -0.34794726199725   1],.... 
0465         [0.00020046464996  -0.00613702100495   0.07881624295611 ... 
0466           -0.43164177673728   1],... 
0467         [0.00669221007614  -0.12405570006965   1]};

Mathematical Statistics
Centre for Mathematical Sciences
Lund University with Lund Institute of Technology

Comments or corrections to the WAFO group


Generated on Thu 06-Oct-2005 02:21:16 for WAFO by m2html © 2003