APPLYING RESAMPLING TO RANDOM PROCESSES PROBLEMS Oleg Seleznjev Moscow State University We introduce the notion of weakly approaching and conditionally weakly approaching sequences of random processes. This notion generalizes the conventional weak convergence and it has been proposed for real valued random variables in Belyaev (1995). Some of the standard tools (e.g., Continuous Mapping Theorem) for an investigation of behavior of weak approaching sequences of random elements in metric spaces are developed. The spaces of smoothed and right continuous functions with left-hand limits are considered. This technique allows to use the resampling approach for an evaluation of distributions of certain continuous functionals on realizations of random processes. Two numerical examples are given for such functionals as supremum and number of crossings of some level by the sum of independent random processes. Belyaev, Yu.K. (1995). Bootstrap, Resampling and Mallows Metric. Lecture Notes 1, Department of Mathematical Statistics, Umeå University