SEMINARIESCHEMA FÖR MATEMATISK STATISTIK Fredag 31/5 15.15 Krzysztof Dcebicki 1996 Mathematical Institute, University of Wroclaw: GAUSSIAN FLUID MODELS Abstract: A fluid model with infinite buffer is considered. Let Psi(x) be the probability that in steady state conditions the buffer content exceeds x. We consider two models: 1) The total net rate is a stationary Gaussian process with mean -c and covariance function R(t). Under condition \int_0^\infty R(t)\,dt<\infty we show that Psi(x) le exp[-gamma x] and find gamma. 2) The input is a fractional Brownian motion with Hurst parameter 0.5 \le H< 1. We show that Psi(x)\le C \exp[-alpha x^{2-2H}]+o(exp[-alpha x^{2-2H}]) and find alpha and C. In proofs we use Slepian inequality for Gaussian processes. This is joint work with Tomasz Rolski. Lokal: Rum 227 i Mattehuset. Björn Holmquist 046-2228546