Compare observed and fitted proportions

- Categorize/Group the continuous x-variables into intervals.
- Calculate the observed rate of success in each interval.
- Compare with the estimated proportion of success from the model.

![Observed and predicted probabilities](chart)

See towards the end of `f8a.R` for an example.
Pearson residuals

Simple standardization, since \(Y_i \sim Bin(1, p_i) \) with \(E(Y_i) = p_i \) and \(V(Y_i) = p_i(1 - p_i) \):

\[
\tilde{r}_i = \frac{Y_i - \hat{p}_i}{\sqrt{\hat{p}_i(1 - \hat{p}_i)}} \quad (\sim N(\cdot, \cdot) \text{ not even asymptotically!})
\]

In R: `infl<-influence(model)` then `infl$pear.res`.

However in general the problem with residual analysis for logistic regression is that such plots are not very revealing because of the binary nature of \(Y \).

Also the Leverage values, i.e. the diagonal elements of \(P = X(X'WX)^{-1}X'W \) are now depending both on \(X \) and \(Y \) and as such these are no more indicators of outliers w.r.t \(X \).
Residuals in logistic regression

Standardized residuals

Take leverages v_{ii} from the diagonal elements of $P = X(X'WX)^{-1}X'W$:

$$ r_i = \frac{Y_i - \hat{p}_i}{\sqrt{\hat{p}_i(1 - \hat{p}_i)(1 - v_{ii})}} \approx N(0, 1) \quad \text{(for large } n) $$

If $|r_i| > |\lambda_{\alpha/2}|$ it might be considered suspiciously large.

Plots of r_i vs i can be useful, although it’s sometimes more revealing to plot their squares, e.g. r_i^2 vs i.

Notice v_{ii} can be obtained using `infl<-influence(model)` then `infl$hat`.
Residual plots

The residuals in logistic regression always have a pattern but with few extreme values!

: Data, \hat{p}_i and 95% CI

: r_i^2

: r_i and 95% CI
Cook’s distance

There is a version of Cook’s distance for logistic regression:

\[D_{i}^{Cook} = \frac{r_i^2}{p + 1} \cdot \frac{v_{ii}}{1 - v_{ii}} \]

Hosmer & Lemeshow consider influential cases those with

\[D_{i}^{Cook} > 1. \]