MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp
FMSN40: . . . with Data Gathering, 9 hp
Lecture 6, spring 2018
Regression diagnostics
Problem areas in least squares

We assume:

1. additive errors ϵ_i
2. Gaussian errors
3. independent errors
4. homoscedastic errors (constant variance)

- When (3)–(4) hold and $\hat{\beta}$ from OLS, then $\text{Var}(\hat{\beta})$ minimal among all unbiased estimators of β.
- When (2) holds: least squares \equiv maximum likelihood
- We do not need (2)–(4) to prove that $E(\hat{\beta}) = \beta$.
- What is tricky is verify (2)–(4).
- Assumptions allow construction of inference procedures. Not necessary to numerically compute least squares estimates.
Non-normal ϵ_i

- Confidence and prediction intervals will be more or less wrong, particularly with skewed distributions.

Found by: Histogram, qqplots etc. of residuals.

Solutions:

- Transformations, e.g. $\ln(Y_i)$
- Use other methods that can handle the true distribution (maximum-likelihood, bootstrap, etc.)
Heterogenous variance

- $V(\varepsilon_i) \neq \sigma^2$ for all ε_i. Often larger variance with larger mean.
- Uncertain observations have too much influence on the estimates.
- Prediction intervals will be wrong.

Found by: Plot of residuals against \hat{Y}.

Solutions:

- Transformations, e.g. $\ln(Y_i)$
- Weighted least squares (less weight to observations with larger variance).
Correlated errors

- $C(\epsilon_i, \epsilon_j) \neq 0$ for some $i \neq j$ (e.g. for $j = i + 1$). Often in time-series data.

- Variance estimates ($V(\hat{\beta}_i)$) will be biased: too small (if positive correlation) or too large (if negative correlation).

- Confidence (and prediction) intervals will be too narrow or too wide.

Found by: Plot residuals against next residual. Autocorrelation plots.

Solutions:

- Time-series, e.g. AR-model, MA-model.
- Generalized least squares
Influential points and outliers

Individual observations, far from the others, that can have a large influence on the estimates of β and σ^2, and thus on predictions and statistical conclusions.

- Outlier: in some sense inconsistent with the rest (Y-wise).
- Outlier in residual: Unexpectedly large (\pm) residual
- Potentially influential point: outlier in the space spanned by the columns of X.

Causes (and remedies):

- Faulty measurement equipment (correct it or leave it out)
- Coding error (correct it or leave it out)
- Wrong or inadequate model (refine the model)
- an “interesting” (and unexpected) measurement result escaping conventional models (revise theory/knowledge of the phenomenon at study). Might lead to a discovery!
Example: Outlier (red *) and potentially influential point (green +).
Estimated line with these points (red) and without them (black).

Find them using a combination of plots and influence measures. Plot on the right shows residuals obtained using all data points.
Leverage (outliers w.r.t. X)

Given the usual multivariate regression model $Y = X\beta + \epsilon$ it is possible to write:

$$\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y = PY$$

where

$$P = X(X'X)^{-1}X'$$

Denote with v_{ij} the generic element of P.

We can then write

$$\hat{Y}_i = v_{i1}Y_1 + \cdots + v_{ii}Y_i + \cdots + v_{in}Y_n$$

and "leverage" (="ability to influence the estimates"), v_{ii}, measures the impact of Y_i on its own estimated value \hat{Y}_i.
Potentially influential points are those far from the centre of X-space. The leverage v_{ii} gives a distance from such centre. We have that

$$\frac{1}{n} \leq v_{ii} \leq \frac{1}{c} \quad \text{(model with intercept)}$$

$$0 \leq v_{ii} \leq \frac{1}{c} \quad \text{(model without intercept)}$$

where $c \geq 1$ is the number of observations with identical X-values.

Also, v_{ii} is minimal when X_i is the centre point. If $v_{ii} = 1/c$ then point i will force the estimated line through itself. Leverage above $2(p + 1)/n$ can be considered high. The points with most extreme X-values have the highest leverage, in one case very high.

A case having high leverage may not be actually influential!
Residual analysis (outliers w.r.t. Y)

In our model, we have assumed that $\epsilon_i \sim N(0, \sigma^2)$ and independent, i.e.

$$\epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}) = N(\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix})$$

- Is this true? How can we find out, since we cannot observe ϵ_i?
- When normality holds, residuals e_i should behave in a certain way. Check this instead.
Residuals

If $\epsilon \sim N(0, \sigma^2 I)$ then the observed residuals,

$$e = Y - \hat{Y} = Y - PY = (I - P)Y$$

have the following property:

$$e \sim N(0, (I - P)\sigma^2)$$

where $P = X(X'X)^{-1}X' = (v_{ij})$. Thus they will have unequal variances and be dependent ($\text{Cov}(e)$ is not a diagonal matrix), the unequality and dependence determined by the structure of X.

Because of different variances it is tricky to compare the residuals e_i.

So let’s standardize those . . . (we’ll see there are issues . . .)
Standardized residuals

Standardize the residuals, subtract the mean (= 0) and divide by the (estimated) standard deviation, to have variance approximately equal to 1:

\[
 r_i = \frac{e_i}{s\sqrt{1 - v_{ii}}}
\]

where \(v_{ii} = i:th\) diagonal element of \(\mathbf{P}\) and

\[
 s^2 = \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} e_i^2}{n - (p + 1)}.
\]

The \(r_i\) have similar variances \((\sim 1)\) but are still dependent and have no nice distribution: while \(e_i\) is normal and \((n - (p + 1))s^2/\sigma^2\) is \(\chi^2\) they are not independent so \(r_i\) **will not be** \(t\)-distributed.
Studentized residuals

All e_i are included in s^2 so a large residual will contribute to a large s^2 affecting all the other standardized residuals. Reduce this influence by using

$$r_i^* = \frac{e_i}{s(i) \sqrt{1 - v_{ii}}}$$

where $s^2_{(i)}$ is the variance estimate from a regression where observation i is excluded. Now e_i and $s_{(i)}$ are independent so that

$$r_i^* \sim t_{n-1-(p+1)}$$

when $\epsilon \sim N(0, I\sigma^2)$. The r_i^* are still not independent of each other, though.
Removing an outlier will reduce the σ-estimate and increase the studentized residual:

\[
\text{s}(i)
\]

\[
\text{stud. residuals, } +/- 2
\]

When $n \to \infty$, $t_n \to N(0, 1)$ (a student’s variable has distribution approaching $N(0,1)$ as n grows).

We can thus consider a studentized residual as suspiciously large when $|r_i^*| > 2$ (the $2 \approx 1.96$ is the 5% quantile from a $N(0,1)$).
Plot!

All residuals should look like random variation around zero. Nonrandom patterns indicate some inadequacy of the fitted model.

- e_i vs \hat{Y}_i: Finds structural inadequacies of the model ("need a quadratic term?").
- r_i^* vs \hat{Y}_i finds points with unusually large residuals.
- r_i^* vs X_i finds outliers in the residuals and structural inadequacies ("which X_i needs a quadratic term?").
- e_{i+1} vs e_i finds correlation between successive residuals, or use `acf()`
Correct model:
Random variation:

Problems:
Structural inadequacies or outliers:
Cook’s distance

Do the potentially influential points actually have an influence? What happens to the estimates if a point is removed? Denote with $\hat{\beta}(i)$ the estimate of β when point i is excluded and the corresponding prediction as $\hat{Y}(i) = X\hat{\beta}(i)$.

Cook’s Distance, D_i measures the effect of case i on $\hat{\beta}$.

$$D_i = \frac{(\hat{\beta}(i) - \hat{\beta})' \cdot \text{Var}_{\hat{\beta}}^{-1} \cdot (\hat{\beta}(i) - \hat{\beta})}{(p + 1)} = \frac{(\hat{\beta}(i) - \hat{\beta})' (X'X)(\hat{\beta}(i) - \hat{\beta})}{(p + 1)s^2}$$

$$= \frac{(\hat{Y}(i) - \hat{Y})'(\hat{Y}(i) - \hat{Y})}{(p + 1)s^2} = \frac{r_i^2}{p + 1} \cdot \frac{v_{ii}}{1 - v_{ii}}$$

[Here $\text{Var}_{\hat{\beta}} \equiv \text{Var}(\hat{\beta}) = s^2(X'X)^{-1}$]

No unanimous consensus on how to use D_i: for some, point i can be considered to have a large influence on the estimates if $D_i > 1$ (for small/medium datasets), and $D_i > 4/n$ (large datasets).
Caution

Don’t be overzealous in comparing a quantity to an empirical threshold, e.g. automatically classify an observation according to $D_i \geq 1$.

Do not take these thresholds as absolute truth, when these are coming out of empirical experience.

Advice: use graphics to examine in closer details the points with values of D that are substantially larger than the rest. Thresholds should only be used to enhance graphical displays.
Going back to the example in the second slide:

For our small dataset, the outlier in red had more effect than the other observations but the potentially influential point had no particular effect.
Influence on a specific parameter

The impact of an observation \(i\) on a specific element \(\hat{\beta}_j\) of vector \(\hat{\beta}\) can be assessed using DFBETAS:

\[
DFBETA_j = \frac{|\hat{\beta}_j - \hat{\beta}_{j(i)}|}{s(i) \sqrt{(X'X)^{-1}}_{jj}}
\]

The change in \(\hat{\beta}_j\) (\(j = 0, \ldots, p\)) can be considered large if its \(DFBETA_j > 2/\sqrt{n}\) (or > 1). With the same words of caution as for \(D_i\).
Summary

- Model validation, model diagnostics (influence analysis, residual analysis) is more like an *art*.
- We can’t check for any possible thing that can go wrong. In particular, large datasets always have some ”strange observation”.
- And **our model might be correct even if some observation is not well represented/fitted.**
- What is important is to be aware of model assumptions, try to verify those, try to fix what can be fixed, spot anomalous/suspicious observations that might (badly) affect inferences and results.
- The previous methods are some “recipes” more than formal tests. Use them as a guiding tool but ultimately follow your judgement.
R functions

- leverages: `hatvalues(mymodel)`
- standardised residuals: `rstandard(mymodel)`
- studentised residuals: `rstudent(mymodel)`
- a number of influence measures are available using `influence()`:
  ```r
  infl <- influence(mymodel) then extract fields
  s_i <- infl$sigma gives $s(i)$
  v <- infl$hat is another way to obtain leverages $v_{ii}$;
  ```
- `cooks.distance(mymodel)` the Cook’s distances
- `dfbetas(mymodel)` gives the DFBETAS.