Useful R-commands: part 1

Use `help(command)` for more information.

- Estimate a linear regression model of variable \(y \) on variable \(x \) from the data frame `mydata`:
 \[
 \text{lm}(y \sim x, \text{data }= \text{mydata})
 \]
 The above fits a model with intercept, that is \(E(y) = \beta_0 + \beta_1 \cdot x \).
 If you wish to fit a model without intercept (i.e. you wish to impose \(\beta_0 = 0 \)): then write
 \[
 \text{lm}(y \sim x - 1, \text{data }= \text{mydata})
 \]
- By saving the result of `lm`, we can access further information:
 \[
 \text{model } \leftarrow \text{lm}(y \sim x, \text{data }= \text{mydata})
 \]
 `summary(model)`
- Plot the data and add the fitted line:
 \[
 \text{plot(mydata}$y \sim mydata$x)}
 \]
 `abline(model)`
- The design matrix \(X \) is returned when using the option \(x = \text{TRUE} \)
 \[
 \text{model } \leftarrow \text{lm}(y \sim x, \text{data }= \text{mydata}, x = \text{TRUE})
 \]
 `model$x`
- The residuals can be obtained and plotted by
 \[
 e \leftarrow \text{model}$\text{residuals}
 \]
 `hist(e)`
 `qqnorm(e)`
 `qqline(e)`
- The matrix \((X^TX)^{-1} \) is returned when using
 \[
 \text{summary(model)$cov.unscaled}
 \]
 and the estimated residual standard deviation by
 \[
 \text{summary(model)$sigma}
 \]
- The parameter estimates and their confidence intervals are obtained with
 \[
 \text{model$coefficients}
 \]
 `confint(model)`
- `predict(model)` produces predicted values, obtained by evaluating the regression function in the \(x \)-values in the data frame that was used to estimate the model, i.e. `mydata`.
- We can also evaluate the regression function in some other \(x \)-values specified in the data frame `newdata`. It has to include the \(x \)-variables used in the model, using the same names, e.g.
 \[
 \text{newdata } \leftarrow \text{data.frame}(x = \text{c}(30))
 \]
 `predict(model, newdata)`
- `predict(model, newdata, interval = "interval")` uses the optional parameter `interval` which can be of type `interval = "confidence"`, or `interval = "prediction"` to compute 95% confidence intervals and 95% prediction intervals respectively.
- `predict(model, newdata, interval = "interval", level = level)` uses the optional parameter `level` to specify the probability level (e.g. `level = 0.90`).
- Percentiles from Student’s \(t \) distribution can be obtained using the `qt` function, type `help(qt)` to learn more. For example the percentile leaving a probability area \(p \) at its left hand side using a Student’s \(t \) distribution with \(df \) degrees of freedom is given by `qt(p, df)`.