Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Magnus Wiktorsson
Centre for Mathematical Sciences
Lund University, Sweden

Lecture 13
Introduction to the bootstrap
Mar 5, 2019
Plan of today’s lecture

1. Last time: MCMC methods for Bayesian inference
 - Korsbetningen (again)

2. The frequentist approach to inference
 - Statistics and sufficiency—small overview
 - Designing estimators
 - Uncertainty of estimators

3. Introduction to bootstrap (Ch. 9)
 - Empirical distribution functions
 - The bootstrap in a nutshell
1. Last time: MCMC methods for Bayesian inference
 - Korsbetningen (again)

2. The frequentist approach to inference
 - Statistics and sufficiency—small overview
 - Designing estimators
 - Uncertainty of estimators

3. Introduction to bootstrap (Ch. 9)
 - Empirical distribution functions
 - The bootstrap in a nutshell
Example: Korsbetningen—background

The background is the following.

- In 1361 the Danish king Valdemar Atterdag conquered Gotland and captured the rich Hanseatic town of Visby.
- Most of the defenders were killed in the attack and are buried in a field, Korsbetningen, outside of the walls of Visby.
- In 1929–1930 the gravesite (with several graves) was excavated. In grave one e.g. a total of 493 femurs, 237 right and 256 left, were found.
- We want to estimate the number of buried bodies.
We set up the following model.

- Assume that the numbers y_1 and y_2 of left resp. right legs are two observations from a $\text{Bin}(n, p)$ distribution.
- Here n is the total number of people buried and p is the probability of finding a leg, left or right, of a person.
- We put a conjugate $\text{Beta}(a, b)$-prior on p and a $\mathcal{U}(256, 2500)$ prior on n.
Example: Korsbetningen—a hybrid MCMC

We proceed as follows:

- A standard Gibbs step for

\[p|n, y_1, y_2 \sim \text{Beta}(a + y_1 + y_2, b + 2n - (y_1 + y_2)). \]

- MH for \(n \), with a symmetric proposal obtained by drawing, given \(n \), a new candidate \(n^* \) among the integers \(\{n - R, \ldots, n, \ldots, n + R\} \).

- The acceptance probability becomes

\[\alpha(n, n^*) = 1 \wedge \frac{(1 - p)^{2n^*}(n^*!)^2(n - y_1)!(n - y_2)!}{(1 - p)^{2n}(n!)^2(n^* - y_1)!(n^* - y_2)!}. \]
Example: Korsbetningen—a hybrid MCMC
However, the previous algorithm mixes slowly. Thus, use instead the following scheme.

1. First draw a new \(n^* \) from the symmetric proposal as previously.
2. Then draw, conditional on \(n^* \), also a candidate \(p^* \) from
 \[f(p|n = n^*, y_1, y_2). \]
3. Finally, accept or reject both \(n^* \) and \(p^* \).

This is a standard MH sampler!
Example: Korsbetningen—an improved MCMC sampler

For the new sampler, the proposal kernel becomes

\[q(n^*, p^* | n, p) \propto \frac{(2n^* + a + b - 1)!}{(a + y_1 + y_2 - 1)!(2n^* + b - y_1 - y_2 - 1)!} \]
\[\times (p^*)^{a+y_1+y_2-1}(1 - p^*)^{b+2n^*-(y_1+y_2)-1}1_{|n-n^*|\leq R}, \]

yielding the acceptance probability

\[\alpha((n, p), (n^*, p^*)) = 1 \wedge \frac{f(n^*, p^*, y_1, y_2)q(n, p | n^*, p^*)}{f(n, p, y_1, y_2)q(n^*, p^* | n, p)} \]
\[= 1 \wedge \left\{ \frac{(n^*)^2(n - y_1)!(n - y_2)!}{(n!)^2(n^* - y_1)!(n^* - y_2)!} \right\} \]
\[\times \frac{(2n + a + b - 1)!(2n^* + b - y_1 - y_2 - 1)!}{(2n^* + a + b - 1)!(2n + b - y_1 - y_2 - 1)!} \].
A one side 95% credible interval for n is $[343, \infty)$.
Korsbetningen—Effect of the prior

- a: 1, b: 1
- a: 2, b: 2
- a: 5, b: 5
- a: 5, b: 2
- a: 13, b: 4
- a: 17, b: 5
Korsbetningen—Effect of the prior

The lower side of a one sided 95% credible interval for n is \{343, 346, 360, 296, 290, 289\}. Posterior mean for n \{1068, 883, 653, 453, 358, 346\}.
1 Last time: MCMC methods for Bayesian inference
 - Korsbetningen (again)

2 The frequentist approach to inference
 - Statistics and sufficiency—small overview
 - Designing estimators
 - Uncertainty of estimators

3 Introduction to bootstrap (Ch. 9)
 - Empirical distribution functions
 - The bootstrap in a nutshell
The frequentist approach to statistics is characterized as follows.

- Data y is viewed as an observation of a random variable Y with distribution P_0 which most often is assumed to be a member of a parametric family

$$P = \{P_\theta; \theta \in \Theta\}.$$

Thus, $P_0 = P_{\theta_0}$ for some $\theta_0 \in \Theta$.

- Estimates $\hat{\theta}(y)$ are realizations of random variables.

- A 95% confidence interval is calculated to cover the true value in 95% of the cases.

- Hypothesis testing is made by rejecting a hypothesis \mathcal{H}_0 if $P(\text{data} \mid \mathcal{H}_0)$ is small.
Let us extend the previous framework somewhat: Given

- observations y
- and a model P for the data,

we want to make inference about some property (estimand) $\tau = \tau(P_0)$ of the distribution P_0 that generated the data. For instance,

$$\tau(P_0) = \int x f_0(x) \, dx, \quad \text{(mean)}$$

where f_0 is the density of P_0.

The inference problem can split into two subproblems:

1. How do we construct a data-based estimator of τ?
2. How do we assess the uncertainty of the estimate?
A **statistic** t is simply a (possibly vector-valued) function of data. Some examples:

1. **The arithmetic mean:** $t(y) = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.
2. **The s^2-statistics:** $t(y) = s^2(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$.
3. **The ordered sample (order statistics):** $t(y) = \{y_{(1)}, y_{(2)}, \ldots, y_{(n)}\}$.
4. **The maximum likelihood estimator (MLE):** $t(y) = \arg\max_{\theta \in \Theta} f_\theta(y)$.
Sufficient statistics

A statistic that completely summarizes the information contained in the data about the unknown parameters θ is called a **sufficient statistic** for θ.

- Mathematically, t is sufficient if the conditional distribution of Y given $t(Y)$ does not depend on the parameter θ.
- This means that given $t(Y)$ we may, by simulation, generate a sample Y' with exact the same distribution as Y without knowing the value of the unknown parameter θ_0.
- The **factorization criterion** says that $t(y)$ is sufficient if and only if the density of Y can be factorized as

$$f_\theta(y) = h(y)g_\theta(t(y)).$$
Example: a simple sufficient statistic

For a simple example, let $y = (y_1, \ldots, y_n)$ be observations of n independent variables with $\mathcal{N}(\theta, 1)$-distribution. Then

$$f_\theta(y|\theta) = \prod_{i=1}^{n} f_\theta(y_i|\theta) = \prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(y_i - \theta)^2}{2} \right) \right)$$

$$= \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp \left(-\frac{1}{2} \sum_{i=1}^{n} y_i^2 \right) \exp \left(\theta n \bar{y} - \frac{1}{2} n \theta^2 \right).$$

We may now conclude that $t(y) = \bar{y}$ is sufficient for θ by applying the factorization criterion with

$$\begin{align*}
&\begin{cases}
t(y) \leftarrow \bar{y}, \\
g_\theta(t(y)) \leftarrow \exp \left(\theta n \bar{y} - \frac{1}{2} n \theta^2 \right), \\
h(y) \leftarrow \left(\frac{1}{\sqrt{2\pi}} \right)^n \exp \left(-\frac{1}{2} \sum_{i=1}^{n} y_i^2 \right).
\end{cases}
\end{align*}$$

Completeness

- A data dependent statistics V is called **ancillary** if its distribution does not depend on θ and **first order ancillary** if $\mathbb{E}_\theta(V) = c$ for all θ (note that the latter is weaker than the former).

- Since a good sufficient statistics $T = t(Y)$ provides lots of information concerning θ it should not—if T is good enough—be possible to form even a first order ancillary statistics based on T, i.e.

$$\mathbb{E}_\theta(V(T)) = c \ \forall \theta \Rightarrow V(t) \equiv c \ (a.s).$$

- Subtracting c leads to the following definition: A sufficient statistics T is called **complete** if

$$\mathbb{E}_\theta(f(T)) = 0 \ \forall \theta \Rightarrow f(t) \equiv 0 \ (a.s).$$
Completeness (cont.)

Theorem (Lehmann-Scheffé)

Let T be an unbiased complete sufficient statistics for θ, i.e. $E_\theta(T) = \theta$. Then T is the (uniquely) best unbiased estimator of θ in terms of variance.

In the example above, where $y = (y_1, \ldots, y_n)$ were observations of n independent variables with $\mathcal{N}(\theta, 1)$-distribution, one may show that the sufficient statistics $t(y) = \bar{y}$ is complete. Thus, t is the uniquely best unbiased estimator of θ!
Our first task is to find a statistic that is a good estimate of the estimand $\tau = \tau(P_0)$ of interest. Two common choices are

- the MLE and
- the least squares estimator.

As mentioned, the MLE is defined as the parameter value maximizing the likelihood function

$$\theta \mapsto f_{\theta}(y)$$

or, equivalently, the log-likelihood function

$$\theta \mapsto \log f_{\theta}(y).$$
Least square estimators

When applying least squares we first find the expectation as a function of the unknown parameter:

$$
\mu(\theta) = \int x f_\theta(x) \, dx.
$$

After this, we minimize the squared deviation

$$
t(y) = \operatorname{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} (\mu(\theta) - y_i)^2
$$

between our observations and the expected value.
Uncertainty of estimators

Some remarks:

- It is important to always keep in mind that the estimate $t(y)$ is an observation of a random variable $t(Y)$. If the experiment was repeated, resulting in a new vector y of random observations, the estimator would take another value.

- In the same way, the error $\Delta(y) = t(y) - \tau$ is a realization of the random variable $\Delta(Y) = t(Y) - \tau$.

- To assess the uncertainty of the estimator we thus need to analyze the distribution function F_Δ of the error $\Delta(Y)$ (error distribution) under P_0.
Confidence intervals and bias

Assume that we have found the error distribution F_Δ. A confidence interval $(L(y), U(y))$ on level α for τ should fulfill

$$1 - \alpha = P_0 (L(Y) \leq \tau \leq U(Y))$$
$$= P_0 (t(Y) - L(Y) \geq t(Y) - \tau \geq t(Y) - U(Y))$$
$$= P_0 (t(Y) - L(Y) \geq \Delta(Y) \geq t(Y) - U(Y)).$$

Thus,

$$\begin{cases}
t(Y) - L(Y) = F_\Delta^{-1}(1 - \alpha/2) \\
t(Y) - U(Y) = F_\Delta^{-1}(\alpha/2)
\end{cases} \iff \begin{cases}
L(Y) = t(Y) - F_\Delta^{-1}(1 - \alpha/2) \\
U(Y) = t(Y) - F_\Delta^{-1}(\alpha/2)
\end{cases}$$

and the confidence interval becomes

$$I_\alpha = (t(y) - F_\Delta^{-1}(1 - \alpha/2), t(y) - F_\Delta^{-1}(\alpha/2)).$$
Confidence intervals and bias

The bias of the estimator is

\[
E_0(t(Y) - \tau) = E_0(\Delta(Y)) = \int z f_\Delta(z) \, dz,
\]

where \(f_\Delta(z) = \frac{d}{dz} F_\Delta(z) \) denotes the density function of \(\Delta(Y) \).

Consequently, finding the error distribution \(F_\Delta \) is essential for making qualitative statements about the estimator.

In the previous normal distribution example,

\[
\Delta(Y) = \bar{Y} - \theta_0 \sim \mathcal{N}(0, 1/n),
\]

yielding \(E_0(\Delta(Y)) = 0 \) and

\[
\begin{align*}
F^{-1}_\Delta(1 - \alpha/2) &= \lambda_{\alpha/2} \frac{1}{\sqrt{n}} \\
F^{-1}_\Delta(\alpha/2) &= -\lambda_{\alpha/2} \frac{1}{\sqrt{n}}
\end{align*}
\]

\[
I_\alpha = \left(\bar{y} - \lambda_{\alpha/2} \frac{1}{\sqrt{n}}, \bar{y} + \lambda_{\alpha/2} \frac{1}{\sqrt{n}} \right).
\]
Last time: MCMC methods for Bayesian inference
 Korsbetningen (again)

The frequentist approach to inference
 Statistics and sufficiency—small overview
 Designing estimators
 Uncertainty of estimators

Introduction to bootstrap (Ch. 9)
 Empirical distribution functions
 The bootstrap in a nutshell
Overview

So, we need $F_{\Delta}(z)$ (or $f_{\Delta}(z)$) to evaluate the uncertainty of t. However, here we generally face two obstacles:

1. We do not know $F_{\Delta}(z)$ (or $f_{\Delta}(z)$); these distributions may for instance depend on the quantity τ that we want to estimate.

2. Even if we knew $F_{\Delta}(z)$, finding the quantiles $F_{\Delta}^{-1}(p)$ is typically complicated as integration cannot be carried out on closed form.

The bootstrap algorithm deals with these problems by

1. replacing P_0 by an data-based approximation resp.

2. analyzing the variation of $\Delta(Y)$ using MC simulation from the approximation of P_0.
The empirical distribution (ED) \hat{P}_0 associated with the data $y = (y_1, y_2, \ldots, y_n)$ gives equal weight ($1/n$) to each of the y_i's (assuming that all values of y are distinct).

Consequently, if $Z \sim \hat{P}_0$ is a random variable, then Z takes the value y_i with probability $1/n$.

The empirical distribution function (EDF) associated with the data y is defined by

$$\hat{F}_{n}(z) = \hat{P}_0(Z \leq z) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{y_i \leq z\}} = \text{fraction of } y_i \text{'s that are less than } z.$$
Properties of the EDF

- It holds that
 \[
 \lim_{z \to -\infty} \hat{F}_n(z) = \lim_{z \to -\infty} F(z) = 0,
 \]
 \[
 \lim_{z \to \infty} \hat{F}_n(z) = \lim_{z \to \infty} F(z) = 1.
 \]

- In addition, trivially, \(n\hat{F}_n(z) \sim \text{Bin}(n, F(z)) \).

- This implies the LLN (as \(n \to \infty \))
 \[
 \hat{F}_n(z) \to F(z) \quad \text{(a.s.)}
 \]

- as well as the CLT
 \[
 \sqrt{n}(\hat{F}_n(z) - F(z)) \xrightarrow{d} \mathcal{N}(0, \sigma^2(z)),
 \]
 where
 \[
 \sigma^2(z) = F(z)(1 - F(z)).
 \]
The bootstrap

- Having access to data y, we may now replace P_0 by \hat{P}_0.
- Any quantity involving P_0 can now be approximated by plugging \hat{P}_0 into the quantity instead. For instance,

$$\tau = \tau(P_0) \approx \hat{\tau} = \tau(\hat{P}_0).$$

- Moreover, the uncertainty of $t(y)$ can be analyzed by drawing repeatedly $Y^* \sim \hat{P}_0$ and looking at the variation (histogram) of $\Delta(Y^*) = t(Y^*) - \tau \approx \Delta(Y^*) = t(Y^*) - \hat{\tau}$.
- Recall that the ED gives equal weight $1/n$ to all the y_i's in y. Thus, simulation from \hat{P}_0 is carried through by simply drawing, with replacement, among the values y_1, \ldots, y_n.
The algorithm goes as follows.

- Construct the ED \hat{P}_0 from the data y.
- Simulate B new data sets Y_b^*, $b \in \{1, 2, \ldots, B\}$, where each Y_b^* has the size of y, from \hat{P}_0. Each Y_b^* is obtained by drawing, with replacement, n times among the y_i’s.
- Compute the values $t(Y_b^*)$, $b \in \{1, 2, \ldots, B\}$, of the estimator.
- By setting in turn $\Delta_b^* = t(Y_b^*) - \hat{\tau}$, $b \in \{1, 2, \ldots, B\}$, we obtain values being approximately distributed according to the error distribution. These can be used for uncertainty analysis.
A Toy example: Exponential distribution

We let \(y = (y_1, \ldots, y_{20}) \) be i.i.d. observations of \(Y_i \sim \text{Exp}(\theta) \), with unknown mean \(\theta \). As estimator we take, as usual, \(t(y) = \bar{y} \) (which is an unbiased complete sufficient statistics also in this case).
A toy Example: Matlab implementation

In Matlab:

```matlab
n = 20;
B = 200;
tau_hat = mean(y);
boot = zeros(1,B);
for b = 1:B,  % bootstrap
    I = randsample(n,n,true);
    boot(b) = mean(y(I));
end
delta = sort(boot - tau_hat);  % sorting to obtain quantiles
alpha = 0.05;  % CB level
L = tau_hat - delta(ceil((1 - alpha/2)*B));  % constructing CB
U = tau_hat - delta(ceil(alpha*B/2));
```
A Toy example: Exponential distribution