Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Magnus Wiktorsson
Centre for Mathematical Sciences
Lund University, Sweden

Lecture 9
Markov chain Monte Carlo II
February 13, 2018
Plan of today’s lecture

1. Last time: Introduction to MCMC
2. The Metropolis-Hastings algorithm (Ch. 5.3)
3. Comments on HA 1
1. Last time: Introduction to MCMC

2. The Metropolis-Hastings algorithm (Ch. 5.3)

3. Comments on HA 1
Markov Chain Monte Carlo (MCMC)

- **Basic idea:** To sample from a density \(f \) we construct a Markov chain having \(f \) as stationary distribution. A law of large numbers for Markov chains guarantees convergence.

- If \(f \) is complicated and/or high dimensional this is often easier than transformation methods and rejection sampling.

- The price is it that samples will be statistically dependent.

- MCMC is currently the most common method for sampling from complicated and/or high dimensional distributions.

- Dates back to the 1950’s with two key papers being
 - Equations of state calculations by fast computing machines (Metropolis et al., 1953) and
We called a distribution $\pi(x)$ stationary if
\[
\int q(x|z)\pi(z)\,dz = \pi(x). \quad \text{(Global balance)}
\]

For a stationary distribution π it holds that
\[
\chi = \pi \Rightarrow f(x_n) = \pi(x_n), \quad \forall n.
\]

Thus, if the chain starts in the stationary distribution, it will always stay in the stationary distribution. In this case we call also the chain stationary.
Local balance

Let \((X_k)\) have transition density \(q\) and let \(\lambda(x)\) be a distribution satisfying the local balance condition

\[
\lambda(x)q(z|x) = \lambda(z)q(x|z), \quad \forall x, z \in X.
\]

Interpretation:

“flow” from state \(x \rightarrow z = “flow” \) from state \(z \rightarrow x\).

Then the following holds.

Theorem

Assume that \(\lambda\) satisfies local balance. Then \(\lambda\) is a stationary distribution.

The converse is not true in general.
A Markov chain \((X_n)\) with stationary distribution \(\pi\) is called **ergodic** if for all initial distributions \(\chi\),

\[
\sup_{A \subseteq X} |\mathbb{P}(X_n \in A) - \pi(A)| \to 0, \quad \text{as} \quad n \to \infty.
\]

Theorem (Geometric ergodicity)

Assume that there exists a density \(\mu(x)\) and a constant \(\epsilon > 0\) such that for all \(x, z \in X\),

\[
q(z|x) \geq \epsilon \mu(z). \quad (\star)
\]

Then the chain \((X_n)\) is **geometrically ergodic**, i.e. there is a \(\rho < 1\) such that for all \(\chi\),

\[
\sup_{A \subseteq X} |\mathbb{P}(X_n \in A) - \pi(A)| \leq \rho^n.
\]
Example: a chain on a discrete set

Let $X = \{1, 2, 3\}$ and

$$
\begin{pmatrix}
q(1|1) = 0.4 & q(2|1) = 0.4 & q(3|1) = 0.2 \\
q(1|2) = 0 & q(2|2) = 0.7 & q(3|2) = 0.3 \\
q(1|3) = 0 & q(2|3) = 0.1 & q(3|3) = 0.9
\end{pmatrix}.
$$

This chain has $\pi = (0, 0.25, 0.75)$ as stationary distribution (check global balance). Moreover, the chain satisfies (\ast) with

$$
\epsilon = 0.3 \quad \text{and} \quad \mu = (0, 1/3, 2/3).
$$

It is thus geometrically ergodic.
Example: a chain on a discrete set

Estimated correlation obtained by simulating the chain 1000 time steps:
A law of large numbers for Markov chains

In the case when \((X_n)\) is geometrically ergodic, the states are only weakly dependent. For such Markov chains there is, just like in the case of independent variables, a law of large numbers (LLN):

Theorem (Law of large numbers for Markov chains)

Let \((X_n)\) be a stationary Markov chain. Denote by \(\pi\) the stationary distribution. In addition, assume that

\[
\sum_{k=1}^{\infty} |C(\phi(X_1), \phi(X_k))| < \infty.
\]

Then for all \(\epsilon > 0\),

\[
P \left(\left| \frac{1}{n} \sum_{k=1}^{n} \phi(X_k) - \int_{X} \phi(x)\pi(x) \, dx \right| > \epsilon \right) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]
Proof of LLN (helping Lemma)

Lemma (Chebyshev’s inequality)

Let $Z \geq 0$ be a r.v. with $\mathbb{E}Z^2 < \infty$ then

$$
\mathbb{P}(Z > \epsilon) \leq \frac{\mathbb{E}[Z^2]}{\epsilon^2}.
$$

Proof.

$$
\mathbb{P}(Z > \epsilon) = \mathbb{E}[I(Z > \epsilon)] \leq \mathbb{E}
\left[
\left(\frac{Z}{\epsilon}\right)^2 I(Z > \epsilon)
\right] \\
\leq \mathbb{E}
\left[
\left(\frac{Z}{\epsilon}\right)^2
\right] = \frac{\mathbb{E}[Z^2]}{\epsilon^2}
$$

\square
In the theorem above,

- the condition (**) is often satisfied for geometrically ergodic Markov chains for which the dependence between states decreases geometrically fast.
- the condition (**) can be weakened considerably (it is however needed for the corresponding CLT; see next lecture).
- the convergence type is called **convergence in probability** and one typically writes

$$\frac{1}{n} \sum_{k=1}^{n} \phi(X_k) \xrightarrow{\mathbb{P}} \int_X \phi(x)\pi(x) \, dx \quad \text{as } n \to \infty.$$

It is possible to extend the LLN to stronger types of convergence, such as convergence a.s.
1 Last time: Introduction to MCMC

2 The Metropolis-Hastings algorithm (Ch. 5.3)

3 Comments on HA 1
The principle of MCMC

The LLN for Markov chains makes it possible to estimate expectations

\[\tau = \mathbb{E}(\phi(X)) = \int_X \phi(x) f(x) \, dx \]

by simulating, \(N \) steps, a Markov chain \((X_k) \) with stationary distribution \(f \) and letting

\[\tau_N = \frac{1}{N} \sum_{k=1}^{N} \phi(X_k) \to \tau \quad \text{as} \quad N \to \infty. \]

This is the principle of all MCMC methods.
To make this idea practicable requires simulation schemes that guarantee
- that simulating the chain \((X_k)\) is an easily implementable process
- that the stationary distribution of \((X_k)\) indeed coincides with the desired distribution \(f\).
- that the chain \((X_k)\) converges towards \(f\) irrespectively of the initial value \(X_1\).

We will now discuss two major classes of such algorithms, namely the Metropolis-Hastings algorithm and the Gibbs sampler.
The Metropolis-Hastings (MH) algorithm

In the following we assume that we can simulate from a transition density \(r(z|x) \), referred to as the proposal kernel, on \(X \).

The MH algorithm simulates a sequence of values \((X_k)\), forming a Markov chain on \(X \), through the following mechanism: given \(X_k \),

- generate \(X^* \sim r(z|X_k) \) and
- set

\[
X_{k+1} = \begin{cases}
 X^* & \text{w. pr. } \alpha(X_k, X^*) \overset{\text{def}}{=} 1 \wedge \frac{f(X^*)r(X_k|X^*)}{f(X_k)r(X^*|X_k)}, \\
 X_k & \text{otherwise.}
\end{cases}
\]

Here we used the notation \(a \wedge b \overset{\text{def}}{=} \min\{a, b\} \). The scheme is initialized by drawing \(X_1 \) from some initial distribution \(\chi \).
The MH algorithm: Pseudo-code

draw $X_1 \sim \chi$
for $k = 1 \rightarrow (N - 1)$ do
 draw $X^* \sim r(z|X_k)$
 set $\alpha(X_k, X^*) \leftarrow 1 \land \frac{f(X^*)r(X_k|X^*)}{f(X_k)r(X^*|X_k)}$
 draw $U \sim \mathcal{U}(0, 1)$
 if $U \leq \alpha$ then
 $X_{k+1} \leftarrow X^*$
 else
 $X_{k+1} = X_k$
 end if
end for
set $\tau_N \leftarrow \sum_{k=1}^{N} \phi(X_k)/N$
return τ_N
A look at $\alpha(X_k, X^*)$

Recall that

$$\alpha(X_k, X^*) = 1 \wedge \frac{f(X^*) r(X_k | X^*)}{f(X_k) r(X^* | X_k)}$$

is the probability of accepting the new state X^* given the old state X_k.

First, ignore the transition kernel r. Then

- the ratio $f(X^*) / f(X_k)$ says: accept (keep) the proposed state X^* if it is “better” than the old state X_k (as measured by f);
- otherwise, if the proposed state is “worse” than the old one, accept it with a probability proportional to how much worse.
A look at $\alpha(X_k, X^*)$

Recall again

$$\alpha(X_k, X^*) = 1 \wedge \frac{f(X^*)r(X_k|X^*)}{f(X_k)r(X^*|X_k)}.$$

At the same time we also want to explore the state space, where some states may be easier to reach than others. This is compensated for by the factor $r(X_k|X^*)/r(X^*|X_k)$.

- If it is easy to reach X^* from X_k, the denominator $r(X^*|X_k)$ will reduce the acceptance probability;
- if it is easy to get back to X_k from X^*, the numerator $r(X_k|X^*)$ will increase the acceptance probability.
Convergence of the MH algorithm

The following result is fundamental.

Theorem (Global balance of the MH sampler)

The chain \((X_k)\) generated by the MH sampler has \(f\) as stationary distribution.

In addition, one may prove, under weak assumptions, that the MH algorithm is also geometrically ergodic, implying that, as \(N \to \infty\),

\[
\tau_N = \frac{1}{N} \sum_{k=1}^{N} \phi(X_k) \to \tau = \int \phi(x) f(x) \, dx.
\]

Given some starting value \(X_1\), there will be, say, \(B\) iterations before the distribution of the chain can be considered as “sufficiently close” to the stationary distribution. The values \((X_k)_{k=1}^{B}\) are referred to as burn-in and are typically discarded in the analysis.
There are a number of different ways of constructing the proposal kernel \(r \). The three main classes are

- **independent** proposals,
- **symmetric** proposals, and
- **multiplicative** proposals.
Independent proposals are characterized as follows.

- Draw the candidates from $r(z)$, i.e. independently of the current state x.
- The acceptance probability reduces to

$$\alpha(x, z) = 1 \wedge \frac{f(z) r(x)}{f(x) r(z)}.$$

- Here it is required that $\{x : f(x) > 0\} \subseteq \{x : r(x) > 0\}$ to ensure convergence.
- If we take $r(x) = f(x)$, which is of course infeasible in general, the acceptance probability reduces to 1 and we get independent samples from f.
Symmetric proposals are characterized by the following.

- It holds that $r(z|x) = r(x|z)$, $\forall (x, z) \in X^2$.
- In this case the acceptance probability reduces to

$$
\alpha(x, y) = 1 \wedge \frac{f(z)}{f(x)}.
$$

- Commonly this corresponds to $X^* = X_k + \epsilon$ (random walk proposal) with, e.g.,
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$ or
 - $\epsilon \sim \mathcal{U}(-a, a)$.
An easy way to obtain an asymmetric proposal where the size of the jump depends on the current state $X_k = x$ is to take

$$X^* = x \epsilon,$$

where ϵ is drawn from some density p.

The proposal kernel now becomes $r(z|x) = p(z/x)/x$ and the acceptance probability becomes

$$\alpha(x, z) = 1 \wedge \frac{f(z)p(x/z)/z}{f(x)p(z/x)/x}.$$
Example: a tricky integral

Since the target density f enters the acceptance probability $\alpha(x, z)$ only via the ratio $f(z)/f(x)$, we only need to know f up to a normalizing constant (cf. rejection sampling). This is one of the main strengths of the MH sampler.

As an example we estimate the variance $\tau = \mathbb{E}(X^2)$ under

$$f(x) = \exp(\cos^2(x))/c, \quad x \in (-\pi/2, \pi/2),$$

where $c > 0$ is unknown, using the MH algorithm.

We propose new candidates according to a simple symmetric random walk initialized in the origin, i.e.

$$r(z|x) = \mathcal{N}(z; x, \sigma^2)$$

and $X_1 = 0$.
Example: a tricky integral (cont.)

In Matlab:

```matlab
z = @(x) exp(cos(x).^2).*x > -pi/2).*x < pi/2;
burn_in = 2000;
M = N + burn_in
X = zeros(1,M);
X(1) = 0;
for k = 1:(M - 1),
cand = X(k) + randn*sigma;
alpha = z(cand)/z(X(k));
if rand <= alpha,
    X(k + 1) = cand;
else
    X(k + 1) = X(k);
end
end
tau = mean(X(burn_in:M).^2);
```
Example: a tricky integral (cont.)

Comparison between the true density and the histogram of X_k, $k = 2001, \ldots, 22000$.
Example: a tricky integral (cont.)

MH output (τ_N) for increasing N (blue) and true value (red):
1. Last time: Introduction to MCMC

2. The Metropolis-Hastings algorithm (Ch. 5.3)

3. Comments on HA 1
A few comments on HA 1

- Always provide **numerical values** (not only figures), preferably in a table.
- Focus on **describing** precisely how you obtained your results rather than on describing the general theory. But be concise!
- **Analyze** your results.
- A figure caption cannot almost never be too long!
- Check your **importance weights** properly!
Next time

Next time we will

- prove the global balance theorem above and
- move on to the Gibbs sampler.