Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Magnus Wiktorsson
Centre for Mathematical Sciences
Lund University, Sweden

Lecture 3
Importance sampling
January 23, 2018
Last time: MC output analysis

- We used the CLT

\[
\sqrt{N} (\tau_N - \tau) \xrightarrow{d.} \mathcal{N}(0, \sigma^2(\phi))
\]

to target \(\tau\) by the approximate two-sided confidence interval

\[
\left(\tau_N - \lambda_{\alpha/2} \frac{\sigma(\phi)}{\sqrt{N}}, \tau_N + \lambda_{\alpha/2} \frac{\sigma(\phi)}{\sqrt{N}} \right).
\]

- In addition, we discussed how to estimate \(\varphi(\tau)\) for some function \(\varphi : \mathbb{R} \to \mathbb{R}\) having at hand an estimator \(\tau_N\) of \(\tau\). If \(\varphi \in C^1\) one may prove the CLT

\[
\sqrt{N} (\varphi(\tau_N) - \varphi(\tau)) \xrightarrow{d.} \mathcal{N}(0, \varphi'(\tau)^2 \sigma^2(\phi)).
\]

Consequently, the natural estimator \(\varphi(\tau_N)\) works fine, at least asymptotically (but suffers in general from bias for finite \(N\)’s).
Example: Buffon’s needle

Consider a wooden floor with parallel boards of width d on which we randomly drop a needle of length ℓ, with $\ell \leq d$. Let

\[
\begin{align*}
X &= \text{distance from the lower needlepoint to the upper board edge line}, \\
\theta &= \text{angle between the needle and the board edge normal}.
\end{align*}
\]

Then

\[
\tau = \mathbb{P}(\text{needle intersects board edge}) = \mathbb{P}(X \leq \ell \cos \theta) = \ldots = \frac{2\ell}{\pi d}.
\]

or, equivalently,

\[
\pi = \frac{2\ell}{\tau d}.
\]
Example: Buffon’s needle (cont.)

Since \(\tau = \mathbb{P}(\text{needle intersects board edge}) = \mathbb{E}(\mathbb{1}_{\{X \leq \ell \cos \theta\}}) \) can be easily estimated by means of MC, an approximation of \(\pi = \varphi(\tau) = 2\ell/(\tau d) \) can be obtained via the delta method:

\[
\pi \approx \varphi(\tau) = \frac{2\ell}{\tau d}.
\]
We discussed (briefly) how to generate pseudo-random, uniformly distributed numbers \((U_n)\) using the linear congruential generator

\[U_n = (a \cdot U_{n-1} + c) \mod m. \]

Having at hand such \(U(0, 1)\)-distributed numbers \(U\), we also looked at how to generate random numbers \(X\) from an arbitrary distribution \(F\) by means of the inversion method, i.e., by letting

\[X = F^{-1}(U) = \inf\{x \in \mathbb{R} : F(x) \geq U\}. \]
Conditional methods

Let f be a multivariate density on \mathbb{R}^d. By decomposing f into conditional densities according to

$$f(x_1, \ldots, x_d) = f(x_1) \prod_{\ell=2}^{d} f(x_{\ell}|x_1, \ldots, x_{\ell-1}),$$

the problem of sampling from a multivariate density can be reduced to that of sampling from several univariate densities:

- draw $X_1 \sim f(x_1)$
- for $\ell = 2 \rightarrow d$ do
 - draw $X_\ell \sim f(x_\ell|X_1, \ldots, X_{\ell-1})$
- end for
- return $X = (X_1, \ldots, X_d)$

Trivially, the resulting draw X has the correct distribution f. This method presumes that the conditional densities are easily obtained, which is not always the case.
Rejection sampling

In many cases we do not know the inverse of \(F \) or not even the normalizing constant of the density \(f \). However, if \(g \) is another density such that \(f(x) \leq Kg(x) \) for all \(x \in \mathbb{R}^d \) and some constant \(K < \infty \), we may use rejection sampling:

\[
\begin{align*}
\text{repeat} & \\
& \text{draw } X^* \sim g \\
& \text{draw } U \sim U(0, 1) \\
\text{until } & U \leq \frac{f(X^*)}{Kg(X^*)} \\
X & \leftarrow X^* \\
\text{return } X
\end{align*}
\]
Theorem (Rejection sampling)

The output X of the rejection sampling algorithm is a random variable with density function f. Moreover, the expected number of trials needed before acceptance is K.
Example

We wish to simulate $f(x) = \frac{\exp(\cos^2(x))}{c}, \ x \in (-\pi/2, \pi/2)$, where $c = \int_{-\pi/2}^{\pi/2} \exp(\cos^2(z)) \, dz = \pi e^{1/2} I_0(1/2)$ is the normalizing constant.

However, since for all $x \in (-\pi/2, \pi/2)$,

$$f(x) = \frac{\exp(\cos^2(x))}{c} \leq \frac{e}{c} = \frac{e\pi}{c} \times \frac{1}{\pi},$$

where g is the density of $U(-\pi/2, \pi/2)$, we may use rejection sampling where a candidate $X^* \sim U(-\pi/2, \pi/2)$ is accepted if

$$U \leq \frac{f(X^*)}{Kg(X^*)} = \frac{\exp(\cos^2(X^*))}{c} \frac{e/c}{e/c} = \exp(\cos^2(X^*) - 1).$$
\[
\text{prob} = @(x) \exp((\cos(x))^2 - 1);
\]
\[
\text{trial} = 1;
\]
\[
\text{accepted} = \text{false};
\]
\[
\text{while } \sim \text{accepted},
\]
\[
\quad \text{Xcand} = -\pi/2 + \pi \times \text{rand};
\]
\[
\quad \text{if } \text{rand} < \text{prob}(\text{Xcand}),
\]
\[
\quad \quad \text{accepted} = \text{true};
\]
\[
\quad \text{X} = \text{Xcand};
\]
\[
\quad \text{else}
\]
\[
\quad \quad \text{trial} = \text{trial} + 1;
\]
\[
\quad \text{end}
\]
\[
\text{end}
\]

Figure: Plot of a histogram of 20,000 accept-reject draws together with the true density. The average number of trials was 1.5555 (\(\approx K = e^{1/2}/I_0(1/2) \approx 1.5503\)).
Plan of today’s lecture

1. Importance sampling (IS)
2. Self-normalized IS
3. Home assignment 1 (HA1)
1. Importance sampling (IS)

2. Self-normalized IS

3. Home assignment 1 (HA1)
Advantages of the MC method

The MC method

- is more efficient than deterministic methods in high dimensions,
- does in general not require knowledge of the normalizing constant of a density for computing expectations, and
- handles efficiently “strange” integrands that may cause problems for deterministic methods.

\[h(x) = \sin^2 \left(\frac{1}{\cos(\log(1 + 2\pi x))} \right) \]
Problems with MC integration

OK, MC integration looks promising. We may however run into problems if

- it is hard to sample from \(f \) or
- if the integrand \(\phi \) and the density \(f \) are dissimilar; in this case we will end up with a lot of draws where the integrand is small, and consequently only a few draws will contribute to the estimate. This gives a large variance.

These problems can often be solved using importance sampling.
Importance sampling (IS, Ch. 6.4.1)

The basis of importance sampling is to take an instrumental density g on X such that $g(x) = 0 \Rightarrow f(x) = 0$ and rewrite the integral as

$$
\tau = \mathbb{E}_f (\phi(X)) = \int_X \phi(x) f(x) \, dx = \int_{f(x) > 0} \phi(x) f(x) \, dx
$$

$$
= \int_{g(x) > 0} \phi(x) \frac{f(x)}{g(x)} g(x) \, dx = \mathbb{E}_g \left(\phi(X) \frac{f(X)}{g(X)} \right) = \mathbb{E}_g (\phi(X) \omega(X)) ,
$$

where

$$
\omega : \{x \in X : g(x) > 0\} \ni x \mapsto \frac{f(x)}{g(x)}
$$

is the so-called importance weight function.
The basis of importance sampling is to take an instrumental density g on X such that $g(x) = 0 \Rightarrow \phi(x)f(x) = 0$ and rewrite the integral as

$$\tau = \mathbb{E}_f(\phi(X)) = \int_X \phi(x)f(x) \, dx = \int_{|\phi(x)|f(x) > 0} \phi(x)f(x) \, dx$$

$$= \int_{g(x) > 0} \phi(x)\frac{f(x)}{g(x)}g(x) \, dx = \mathbb{E}_g \left(\phi(X)\frac{f(X)}{g(X)} \right) = \mathbb{E}_g \left(\phi(X)\omega(X) \right),$$

where

$$\omega : \{x \in X : g(x) > 0\} \ni x \mapsto \frac{f(x)}{g(x)}$$

is the so-called importance weight function.
Importance sampling (cont.)

We may now estimate \(\tau = \mathbb{E}_g(\phi(X)\omega(X)) \) using standard MC:

\[
\text{for } i = 1 \rightarrow N \text{ do }
\begin{align*}
\text{draw } X_i & \sim g \\
\text{end for}
\]

\[
\text{set } \tau_N \leftarrow \sum_{i=1}^{N} \frac{\phi(X_i)\omega(X_i)}{N}
\]

\[
\text{return } \tau_N
\]

Here, trivially,

\[
\mathbb{V}(\tau_N) = \frac{1}{N} \mathbb{V}_g(\phi(X)\omega(X))
\]

and we should thus aim at choosing \(g \) so that the function \(x \mapsto \phi(x)\omega(x) \) is close to constant in the support of \(g \). This gives a minimal variance.
Example: A tricky normal expectation

Let X have $\mathcal{N}(2, 1)$ distribution and try to compute

$$\tau = \mathbb{E} \left(\mathbbm{1}_{X \geq 0} \sqrt{X} \exp(-X^3) \right) = \int \mathbbm{1}_{x \geq 0} \sqrt{x} \exp(-x^3) \mathcal{N}(x; 2, 1) \, dx,$$

where $\mathcal{N}(x; \mu, \sigma^2)$ denotes the density of the normal distribution.

Here the support of f is significantly larger than that of ϕ.
Thus, standard MC will lead to a waste of computational power. Better is to use IS with g being a scale-location-transformed normal-distribution:

\[g(x) \]
\[f(x) \]
\[\phi(x) \]
\[\phi(x)f(x) \]
Example: A tricky normal expectation (cont.)

\[
\phi = @(x) (x \geq 0) \cdot \sqrt{x} \cdot \exp(-x^3);
\]
\[
\mu = 0.8;
\]
\[
\sigma = 0.4;
\]
\[
\omega = @(x) \frac{\text{normpdf}(x,2,1)}{\text{normpdf}(x,\mu,\sigma)};
\]
\[
X = \sigma \cdot \text{randn}(1,N) + \mu;
\]
\[
\tau = \text{mean}(\phi(X) \cdot \omega(X));
\]
1. Importance sampling (IS)

2. Self-normalized IS

3. Home assignment 1 (HA1)
Often $f(x)$ is known only up to a normalizing constant $c > 0$, i.e. $f(x) = z(x)/c$, where we can evaluate $z(x) = cf(x)$ but not $f(x)$. Then, as before,

$$
\tau = \mathbb{E}_f(\phi(X)) = \int_X \phi(x)f(x)\,dx = \frac{c \int_{f(x)>0} \phi(x)f(x)\,dx}{c \int_{f(x)>0} f(x)\,dx}
$$

$$
= \frac{\int_{g(x)>0} \phi(x)\frac{cf(x)}{g(x)}\,g(x)\,dx}{\int_{g(x)>0} \frac{cf(x)}{g(x)}\,g(x)\,dx}
$$

$$
= \frac{\int_{g(x)>0} \phi(x)\omega(x)\,g(x)\,dx}{\int_{g(x)>0} \omega(x)\,g(x)\,dx}
$$

$$
= \frac{\mathbb{E}_g(\phi(X)\omega(X))}{\mathbb{E}_g(\omega(X))},
$$

where we are able to evaluate

$$
\omega : \{x \in X : g(x) > 0\} \ni x \mapsto \frac{z(x)}{g(x)}.
$$
Self-normalized IS (cont.)

Thus, having generated a sample X_1, \ldots, X_N from g we may estimate the numerator $\mathbb{E}_g(\phi(X)\omega(X))$ as well as the denominator $\mathbb{E}_g(\omega(X))$ using standard MC:

$$
\tau = \frac{\mathbb{E}_g(\phi(X)\omega(X))}{\mathbb{E}_g(\omega(X))}
\approx \frac{1}{N} \sum_{i=1}^N \phi(X_i)\omega(X_i) = \sum_{i=1}^N \frac{\omega(X_i)}{\sum_{\ell=1}^N \omega(X_\ell)} \phi(X_i).
$$

Note that the denominator yields an estimate of the normalizing constant c:

$$
c = \mathbb{E}_g(\omega(X)) \approx \frac{1}{N} \sum_{\ell=1}^N \omega(X_\ell).
$$
Example

We reconsider the density

\[f(x) = \frac{\exp(\cos^2(x))}{c}, \quad x \in (-\pi/2, \pi/2), \]

treated last time and estimate its variance as well as the normalizing constant \(c > 0 \) using self-normalized IS.

Let the instrumental distribution \(g \) be the uniform distribution \(U(-\pi/2, \pi/2) \).
Example (cont.)

\[z = @(x) \exp(\cos(x)^2); \]
\[X = -\pi/2 + \pi \times \text{rand}(1,N); \]
\[\omega = @(x) \pi \times z(x); \]
\[\tau = \text{cumsum}(X.^2 \times \omega(X)) / \text{cumsum}(\omega(X)); \]
\[c = \text{cumsum}(\omega(X)) / (1:N); \]
\[\text{subplot}(2,1,1); \]
\[\text{plot}(1:N,c); \]
\[\text{subplot}(2,1,2); \]
\[\text{plot}(1:N,\tau); \]
The weighted sample \((X_i, \omega(X_i))\) can be viewed as an MC representation of the target distribution \(f\).

\[
f(x) = \exp(\cos^2(x))/c, -\pi/2 < x < \pi/2
\]

\[
\begin{align*}
 f(x) &\quad \Rightarrow \quad (X_i, \omega(X_i))
\end{align*}
\]
1. Importance sampling (IS)

2. Self-normalized IS

3. Home assignment 1 (HA1)
HA1: Simulation and Monte Carlo integration

HA1 comprises
- one question on random number generation and
- two larger questions on IS (one- and two-dimensional problems) containing
- one sub question (2(c)) on variance reduction (which we will discuss next time).
Submission:

- A written report in PDF format (*No MS Word-files*). The pair Sverker Persson and Lilith Nilsson name their report file `proj1-nlps.pdf`. A printed and stitched copy of the report is given to the lecturer at the very beginning of the lecture on **Tuesday 6 Feb**.

- An email containing the report file as well as *all* your m-files with a file `proj1.m` that runs your analysis. This email has to be sent to `fms091@matstat.lu.se` before **Tuesday 6 Feb, 15:00:00** (that is, 15 minutes before the beginning of the lecture). Use your STIL-IDs in the subject line of the email. Set the subject line to: “Project 1 by “STILID1” and “STILID2” “

- Late submissions do not qualify for marks higher than 3.
Instructions on report writing

- Explain carefully all introduced notation: $X = ?$.
- Describe/explain the model.
- The text should be readable without access to the Matlab code; write plain text instead of including Matlab code in the report.
- Include your solutions in the text; do not write “calculations of $?$ can be found in the matlab code”, or similar.
- When referring to the lecture notes or the book, be specific (i.e. refer to Chapter/which lecture).
- Refer to your figures in the text. Explain colors etc. in the figure captions (a figure caption is almost never to long).
- Write clear motivations and discussions when it concerns choice of instrumental distributions etc.