Valuation of derivative assets
Lecture 15

Magnus Wiktorsson

October 18, 2018
Affine term structure (B Prop 24.2 p. 379)

If

\[p(t, T) = \exp(A(t, T) - B(t, T)r(t)) = F(t, r(t), T), \]

where \(A, B \) are deterministic functions which do not depend on \(r \). We say that the ZCB price have an **affine term structure**

This is true for all short rate models of the form

\[dr(t) = \alpha(t)r(t) + \beta(t)\,dt + \sqrt{\gamma(t)r(t) + \delta(t)}\,dW_t. \]

The functions \(A \) and \(B \) satisfy the following system of ordinary differential equations (ODE:s)

\[B'_t(t, T) = -\alpha(t)B(t, T) + \frac{1}{2}\gamma(t)B^2(t, T) - 1, \quad B(T, T) = 0 \]

\[A'_t(t, T) = \beta(t)B(t, T) - \frac{1}{2}\delta(t)B^2(t, T), \quad A(T, T) = 0 \]
Solution of ATS ODE:s

If $\gamma \equiv 0$ then there is an immediate solution to the equations which is given by:

\[B(t, T) = \int_t^T e^{\int_t^u \alpha(v) \, dv} \, du \]

\[A(t, T) = -\int_t^T \beta(s) B(s, T) \, ds + \int_t^T \frac{\delta(s)}{2} B(s, T)^2 \, ds \]

\[= -\int_t^T \beta(s) \left(\int_s^T e^{\int_s^u \alpha(v) \, dv} \, du \right) \, ds \]

\[+ \int_t^T \frac{\delta(s)}{2} \left(\int_s^T e^{\int_s^u \alpha(v) \, dv} \, du \right)^2 \, ds \]

If α, β and δ are complicated then the integrals may have to be calculated numerically.
Example:
Hull-White (extended Vašiček)

\[
dr(t) = (\Theta(t) - ar(t)) \, dt + \sigma(t) \, dW_t, \quad (\Theta(t), \ a, \ \sigma(t) > 0).
\]

This gives

\[
\alpha(t) \equiv -a, \ \beta(t) \equiv \Theta(t), \ \gamma(t) \equiv 0, \ \delta(t) \equiv \sigma(t)^2.
\]

and thus

\[
B(t, T) = \int_t^T e^{\int_t^u -a \, dv} \, du = \int_t^T e^{-a(u-t)} \, du = \left[-\frac{e^{-a(u-t)}}{a}\right]_t^T
\]

\[
= \frac{1 - e^{-a(T-t)}}{a}
\]

\[
A(t, T) = -\int_t^T \Theta(s)B(s, T) \, ds + \int_t^T \frac{\sigma(s)^2}{2} B(s, T)^2 \, ds
\]

\[
= -\int_t^T \Theta(s) \frac{1 - e^{-a(T-s)}}{a} \, ds + \int_t^T \frac{\sigma(s)^2}{2} \left(\frac{1 - e^{-a(T-s)}}{a}\right)^2 \, ds
\]
A ZCB with maturity T is a traded asset and should therefore have \mathbb{Q}-dynamics of the form

$$dp(t, T) = r(t)p(t, T)\, dt + p(t, T)v(t, T)\, dW_t$$

where $v(t, T)$ is some \mathcal{F}_t-adapted function (possibly multi-dim). Assume that we have a \mathbb{Q}-model for the forward rate $f(t, u)$ for every $u > 0$,

$$df(t, u) = \alpha(t, u)\, dt + \sigma(t, u)\, dW_t,$$

where α (1-dim) and σ (possibly multi-dim) are \mathcal{F}_t-adapted functions. We then have that

$$p(t, T) = e^{-\int_t^T f(t, u)\, du}.$$

We will now look for conditions on α and σ which makes these two models for $p(t, T)$ to be consistent.
We must have
\[\alpha(t, T) = \sigma(t, T) \int_t^T \sigma(t, u)^* \, du \]
for the forward dynamics to be consistent with the ZCB dynamics.

This is sometimes also called the HJM drift condition.
Forward rates for ATS models

For ATS models we have

\[p(t, T) = \exp(A(t, T) - B(t, T)r(t)). \]

Now we have that

\[f(t, T) = -\frac{\partial}{\partial T} \ln(p(t, T)) = -A'_T(t, T) + B'_T(t, T)r(t). \]

This gives that

\[df(t, T) = \alpha(t, T) \, dt + B'_T(t, T)\sqrt{\gamma(t)r(t)} + \delta(t) \, dW_t \]

where easy but somewhat lengthy calculations using the ATS ODE:s give

\[\alpha(t, T) = B(t, T)B'_T(t, T)(\gamma(t)r(t) + \delta(t)) \]
The HJM framework

Suppose that

\[df(t, T) = \alpha(t, T) \, dt + \sigma(t, T) \, dW(t) \]
\[f(0, T) = f^\ast(0, T) \]

under \(Q \), where \(W \) is a d-dim BM and \(\alpha \) (1-dim) and \(\sigma \) (d-dim) are adapted. To avoid arbitrage we should have

\[\alpha(t, T) = \sigma(t, T) \int_t^T \sigma(t, u)^* \, du. \]

This is called the HJM drift condition.
The HJM framework (cont)

The good thing about HJM models is that we immediately fit the observed initial term structure for ZCB:s.

Moreover the d-dim BM makes it possible also to capture the forward curve dynamics.

In the model we only need to specify the volatility structure.

One problem is that most non-deterministic volatility functions lead to non-Markovian forward rates.
The HJM framework and corresponding short rate dynamics

So we have

\[r(t) = f(t, t) \]

and thus

\[
dr(t) = df(t, t) = \frac{\partial}{\partial T} f(t, T) \big|_{T=t} \, dt + d_t f(t, T) \big|_{T=t}
\]

\[= \frac{\partial}{\partial T} f(t, T) \big|_{T=t} \, dt + \alpha(t, t) \, dt + \sigma(t, t) \, dW(t) \]

\[= \frac{\partial}{\partial T} f(t, T) \big|_{T=t} \, dt + \sigma(t, t) \, dW(t), \]

since

\[\alpha(t, t) = \sigma(t, t) \int_t^t \sigma(t, u)^* \, du = 0. \]
Example:
The simplest possible HJM-model is the one where $\sigma(t, T) \equiv \bar{\sigma}$ where $\bar{\sigma}$ is a deterministic constant. This gives

$$df(t, T) = \bar{\sigma} \int_{t}^{T} \bar{\sigma} \, du + \bar{\sigma} \, dW(t) = \bar{\sigma}^2 (T - t) \, dt + \bar{\sigma} \, dW(t),$$

and thus

$$f(t, T) = f^*(0, T) + \int_{0}^{t} \bar{\sigma}^2 (T - s) \, ds + \int_{0}^{t} \bar{\sigma} \, dW(s) = f^*(0, T) + \bar{\sigma}^2 (tT - t^2/2) + \bar{\sigma} W(t).$$

This gives the short rate

$$r(t) = f(t, t) = f^*(0, t) + \bar{\sigma}^2 t^2/2 + \bar{\sigma} W(t),$$

which gives

$$dr(t) = \frac{\partial}{\partial t} f^*(0, t) + \bar{\sigma}^2 t \, dt + \bar{\sigma} \, dW(t), \text{ (Calibrated Ho-Lee model).}$$
The Ho-Lee model calibrated to initial ZCB prices

Remember that

\[p(t, T) = e^{-\int_t^T \Theta(s)(T-s) \, ds + \frac{1}{2} \sigma^2 \frac{(T-t)^3}{3} - (T-t)r(t)} \]

We have for calibrated model that

\[\Theta(t) = \frac{\partial}{\partial t} f^*(0, t) + \sigma^2 t. \]

Plugging in this expression for \(\Theta \) into Eq. (*) gives

\[
\begin{align*}
p(t, T) &= \exp \left(- \int_t^T \left(\frac{\partial}{\partial s} f^*(0, s) + \sigma^2 s \right)(T-s) \, ds \right. \\
&\quad + \left. \frac{1}{2} \sigma^2 \left(\frac{(T-t)^3}{3} - (T-t)r(t) \right) \right)
\end{align*}
\]

\[
\begin{align*}
&= \exp \left(- \left[(f^*(0, s) + \sigma^2 s^2/2)(T-s) \right]_t^T - \int_t^T f^*(0, s) + \sigma^2 s^2/2 \, ds \\
&\quad + \frac{1}{2} \sigma^2 \left(\frac{(T-t)^3}{3} - (T-t)r(t) \right) \right)
\end{align*}
\]

\[
\begin{align*}
&= \exp \left(f^*(0, t)(T-t) - (\int_0^T f^*(0, s) \, ds - \int_0^t f^*(0, s) \, ds) \\
&\quad + \sigma^2 t^2/2 (T-t) - \sigma^2 T^3/6 - t^3 \right) - (T-t)r(t)
\end{align*}
\]
Calibration to initial ZCB prices for Ho-Lee model 2

Simplying the above expression we obtain

\[p(t, T) = \frac{p^*(0, T)}{p^*(0, t)} \exp \left((T - t)f^*(0, t) - \frac{1}{2}\sigma^2 t(T - t)^2 - (T - t)r(t) \right). \]

This leads to a forward rate as

\[f(t, T) = -\frac{\partial}{\partial T} \ln(p(t, T)) = f^*(0, T) - f^*(0, t) + \sigma^2 t(T - t) + r(t), \]

which gives

\[
\begin{align*}
\mathrm{d}f(t, T) &= \left(-\frac{\partial}{\partial t} f^*(0, t) + \sigma^2 (T - t - t) \right) \mathrm{d}t + \mathrm{d}r(t) \\
&= \left(-\frac{\partial}{\partial t} f^*(0, t) + \sigma^2 (T - 2t) \right) \mathrm{d}t + \left(\frac{\partial}{\partial t} f^*(0, t) + \sigma^2 t \right) \mathrm{d}t + \sigma \mathrm{d}W(t) \\
&= \sigma^2 (T - t) \mathrm{d}t + \sigma \mathrm{d}W(t)
\end{align*}
\]
LIBOR market model in the HJM framework

Recall that
\[df(t, u) = \alpha(t, u)dt + \sigma(t, u)dW(t)^Q \]

and that
\[
X(t) = L_t[T_1, T_2] = \frac{1}{T_2 - T_1} \left(\frac{p(t, T_1)}{p(t, T_2)} - 1 \right)
\]
\[
= \frac{1}{T_2 - T_1} \left(e^{\int_{T_1}^{T_2} f(t, u)du} - 1 \right).
\]

This gives the \(Q^{T_2}\)-dynamics
\[
dX(t) = \frac{1}{T_2 - T_1} e^{\int_{T_1}^{T_2} f(t, u)du} \left(\int_{T_1}^{T_2} \sigma(t, u)du \right) dW^{Q^{T_2}}(t)
\]
\[
= \left(X(t) + \frac{1}{T_2 - T_1} \right) v(t, T_1, T_2) dW^{Q^{T_2}}(t).
\]

This gives that
\[
X(T_1) = \left(X(t) + \frac{1}{T_2 - T_1} \right) e^{-\frac{1}{2} \int_t^{T_1} |v(s, T_1, T_2)|^2ds - \int_t^{T_1} v(s, T_1, T_2) dW^{Q^{T_2}}(s)} - \frac{1}{T_2 - T_1}.
\]