Valuation of derivative assets, FMSN25/MA5M24
Course programme HT-14

Home page
The course homepage is http://www.maths.lth.se/matstat/kurser/fmsn25masm24/

Course expedition
Department Course secretary Maria Lövgren in room 225 A+B in Math-building, southern part.
The expedition is open Mon–Fri 8:00–11:00, 13:00–16:00, phone: 046-222 45 77, e-mail: marial@maths.lth.se.

Course responsible
Magnus Wiktorsson, room MH 130, phone: 046-222 86 25, e-mail: magnusw@maths.lth.se

Computer exercise assistants
Mareile Grosse Ruse
Carl Åkerlindh

Lectures and Exercises
Lecturer:
LP1 (First half of semester): Magnus Wiktorsson

Teaching assistant:
LP1: Mareile Grosse Ruse, Carl Åkerlindh

<table>
<thead>
<tr>
<th>LP</th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mon</td>
<td>15–17</td>
<td>MH:B (Lecture)</td>
</tr>
<tr>
<td></td>
<td>Tue</td>
<td>15–17</td>
<td>E:3336 (Exercise)</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>10–12</td>
<td>MH:B (Lecture)</td>
</tr>
<tr>
<td></td>
<td>Thu</td>
<td>15–17</td>
<td>E:3336 (Exercise)</td>
</tr>
</tbody>
</table>

Home assignment
The home assignment is handed out in reading reading week 4. It should be handed in on October 16 at 17 at the latest. It is then corrected. The errors should be corrected and the home assignment should be handed in again for correction.

Computer exercises
The course has two compulsory computer exercises lasting 2 and 4 hours respectively. The computer exercises are in rooms Backus MH:140 and Newton MH:144.

Comp Exer 1 (Reading week 2: Tue September 9, at 8-10, 2h.) The computer exercise deals with valuation of options in discrete time using Binomial trees. You will price both European and American type options. You will moreover study the convergence rate for Binomial trees.

Comp Exer 2 (Reading week 6: Tue October 7 at 8-12 4h.) Valuation of derivatives can be done through Monte Carlo simulations. This is the main theme in Computer Exercise 2. You will moreover apply various techniques to improve the simulations.

Note that there is an extra lecture about om simulation related to the computer exercise rw 5.
Valuation of derivative assets, HT-14

Literature
- T. Björk (2009) Arbitrage Theory in Continuous Time. 3rd. ed. Oxford University Press. (2nd ed. of Björk from 2004 will also work. It is available as e-book for students with stil identities:
 See http://www.maths.lth.se/matstat/kurser/fmsn25masm24/ht14/chtrans.html for translation between the chapter numbers in 3rd and 2nd ed of Björk)

The compendium Derivative Pricing contains material for some lectures, exercises and answers to the exercises. It is sold by the course secretary for 300 SEK.

Handed out papers All papers handed out on the lectures will be downloadable from the course home-page.

Examination
The exam is in the form of one home assignment and a written exam. To pass the course you need
- Correctly completed the home assignment.
- Participated on both the compulsory computer exercises.
- Obtained a passing grade on the written exam. A passing grade is 3, 4 for 5 LTH students and G or VG for faculty of science students. Allowed aid: pocket calculator, pencil and rubber.

Exam
- First Re-exam: Friday **January 8, 2015** at 14–19 Sparta:B.
- Second Re-exam: Friday **August 27, 2015** at 8–13 Sparta:B.

Course content under first half of semester
The chapters are either in T. Björk’s bok (B) or S. Åberg (former Rasmus) compendium (Å) and Solved problems handout (P). L is for lectures, E is for teacher assisted exercises. An asterisk (*) after an exercise means that it should be done if you have time. The numbers after Week “1(36)” means reading week and calendar week respectively.

Week 1(36)
- **L1:** Introduction, definition of different contracts, the economic model and concepts, discrete time models especially the Binomial model in one and multiple periods [Å 1, B 2].
- **E1:** Å 1.(1–3), B 2.(1–3) (*Typo in B 2.1b II(1;X) = X should be II(1;X) ≠ X), Å 2.(1).
- **L2:** Last part of discrete time models [B.2, 3, Å.2]. Probability theory. [Å 3 (see also B appendix B)]
- **E2:** Å 2.(2–3) Å 3 (1,5,8,9), P 1.5.1.

Week 2(37)
- **Computer exercise 1:** Binomial Model (9/9 at 8-10).
- **L3:** The Wiener Process [Å 4.1], The Ito-Integral and Ito’s formula.[B 4. (1–5), Å 5.(1–2).]
- **E3:** Å 4.(2,3*,9), B 4.(1 (a-d)), Å 4.(10–12).
- **L4:** Filtering, Martingales [Å 4.2, B 4.4]. More Ito’s formula and stochastic calculus [Å 5. (3,4), B 4. (5–8)].
- **E4:** Å 4.(14,16,17), Å 5.(2,3(a),4,6,7),B 4.(7*), P 1.1.2.
Week 3 (38)

L5: SDEs: Geometric Brownian motion, The Ornstein-Uhlenbeck process. The Feynman-Kac’s formula. [B 5, Å 5(3,5)]
E5: Å 5(9,10,11), P(1.1.1), B 4(2,4,8), B 5(5–9).
L6: Portfolio dynamics, Arbitrage-pricing (Classical) [B 6 och B 7(1–4)].
E6: B 5(10-12), B 7(1,2,4–7), P (1.3.1).

Week 4 (39)

Home assignment is handed out.
E7: B 8,3, B 9(2–4, 8–10), P(1.4.1).
L8: Complete, incomplete markets and the modern Arbitrage-pricing [Å 9. B 10,7, 15.]
E8: Å 6,3, Å 9(1–3,5–7), P(1.5.2).

Week 5 (40)

E9: Å 9. (8,9,11,12,14), P(1.6.1),(1.7.1).
L10: Beyond the Black-Scholes model. [Å.7].
L11: Extra lecture, Thu at 15-17 in MH:309A Simulation (a lecture related to computer exercise 2). [Å 13.].

Week 6 (41)

Computer exercise 2. (Tue) Simulation (7/10 at 8–12).
L12: Introduction to Interest rate theory; Basic products and their arbitrage relations [Å 10, B 22.]
E10: B 22.(2,3,5,7), Å 10.(1,2,4), P(1.6.2, 1.8.1).
L13: Market models (LIBOR market models) [Å 11, B 27].
E11: B23.(1-4), Å 10.(6,8).

Week 7 (42)

Home assignments should be handed in before the end of the week (Thu at. 17)
L14: Short rate models [B.23–24 Å 12.1-2].
E12:B 24.(1 (abc), 5, 6) B 25.(1, 2, 5),Å 12.(1,2,3), P 1.8.1.
L15: Martingale models for the short rate and HJM models [B.24–25, Å 12.3].
E13: P 1.9.1. Recapitulation and questions.

Week 8 (43)

L16: Lecture: Tue 10-12 (MH:B) Recapitulation lecture.

Exam

First Re-exam: Friday January 8, 2015 at 14–19 Sparta:B.
Second Re-exam: Friday August 27, 2015 at 8–13 Sparta:B.