Valuation of derivative assets
Lecture 15

Magnus Wiktorsson

October 15, 2015
Affine term structure (B Prop 24.2 p. 379)

If

\[p(t, T) = \exp(A(t, T) - B(t, T)r(t)) = F(t, r(t), T), \]

where \(A, B \) are deterministic functions which do not depend on \(r \). We say that the ZCB price have an **affine term structure**

This is true for all short rate models of the form

\[dr(t) = \alpha(t)r(t) + \beta(t)\, dt + \sqrt{\gamma(t)r(t) + \delta(t)}\, dW_t. \]

The functions \(A \) and \(B \) satisfy the following system of ordinary differential equations (ODE:s)

\[
B'_t(t, T) = -\alpha(t)B(t, T) + \frac{1}{2}\gamma(t)B^2(t, T) - 1, \quad B(T, T) = 0
\]

\[
A'_t(t, T) = \beta(t)B(t, T) - \frac{1}{2}\delta(t)B^2(t, T), \quad A(T, T) = 0
\]
If $\gamma \equiv 0$ then there is an immediate solution to the equations which is given by:

\[
B(t, T) = \int_t^T e^{\int_t^u \alpha(v) \, dv} \, du
\]

\[
A(t, T) = -\int_t^T \beta(s) B(s, T) \, ds + \int_t^T \frac{\delta(s)}{2} B(s, T)^2 \, ds
\]

\[
= -\int_t^T \beta(s) \left(\int_s^T e^{\int_s^u \alpha(v) \, dv} \, du \right) \, ds
\]

\[
+ \int_t^T \frac{\delta(s)}{2} \left(\int_s^T e^{\int_s^u \alpha(v) \, dv} \, du \right)^2 \, ds
\]

If α, β and δ are complicated then the integrals may have to be calculated numerically.
Example:

Hull-White (extended Vašíček)

$$dr(t) = (\Theta(t) - ar(t)) \, dt + \sigma(t) \, dW_t, \quad (\Theta(t), \, a, \, \sigma(t) > 0).$$

This gives

$$\alpha(t) \equiv -a, \quad \beta(t) \equiv \Theta(t), \quad \gamma(t) \equiv 0, \quad \delta(t) \equiv \sigma(t)^2.$$

and thus

$$B(t, T) = \int_t^T e^{\int_t^u -a \, dv} \, du = \int_t^T e^{-a(u-t)} \, du = \left[-\frac{e^{-a(u-t)}}{a} \right]_t^T = 1 - e^{-a(T-t)}$$

$$A(t, T) = -\int_t^T \Theta(s)B(s, T) \, ds + \int_t^T \frac{\sigma(s)^2}{2} B(s, T)^2 \, ds$$

$$= -\int_t^T \Theta(s) \frac{1 - e^{-a(T-s)}}{a} \, ds + \int_t^T \frac{\sigma(s)^2}{2} \left(\frac{1 - e^{-a(T-s)}}{a} \right)^2 \, ds$$
A ZCB with maturity T is a traded asset and should therefore have \mathbb{Q}-dynamics of the form

$$dp(t, T) = r(t)p(t, T)\,dt + p(t, T)v(t, T)\,dW_t$$

where $v(t, T)$ is some \mathcal{F}_t-adapted function (possibly multi-dim). Assume that we have a \mathbb{Q}-model for the forward rate $f(t, u)$ for every $u > 0$,

$$df(t, u) = \alpha(t, u)\,dt + \sigma(t, u)\,dW_t,$$

where α (1-dim) and σ (possibly multi-dim) are \mathcal{F}_t-adapted functions. We then have that

$$p(t, T) = e^{-\int_t^T f(t, u)\,du}.$$

We will now look for conditions on α and σ which makes these two models for $p(t, T)$ to be consistent.
Drift condition for the forward rate

We must have

$$\alpha(t, T) = \sigma(t, T) \int_t^T \sigma(t, u)^* \, du$$

for the forward dynamics to be consistent with the ZCB dynamics.

This is sometimes also called the HJM drift condition.
Forward rates for ATS models

For ATS model we have

\[p(t, T) = \exp(A(t, T) - B(t, T)r(t)). \]

Now we have that

\[f(t, T) = -\frac{\partial}{\partial T} \ln(p(t, T)) = -A'_T(t, T) + B'_T(t, T)r(t). \]

This gives that

\[df(t, T) = \alpha(t, T) \, dt + B'_T(t, T) \sqrt{\gamma(t)r(t)} + \delta(t) \, dW_t \]

where

\[
\alpha(t, T) = \int_t^T B'_u(t, u) \, du B'_T(t, T)(\gamma(t)r(t) + \delta(t)) \\
= [B(t, u)]_t^T B'_T(t, T)(\gamma(t)r(t) + \delta(t)) \\
= B(t, T)B'_T(t, T)(\gamma(t)r(t) + \delta(t))
\]
The HJM framework

Suppose that

\[df(t, T) = \alpha(t, T) \, dt + \sigma(t, T) \, dW(t) \]
\[f(0, T) = f^*(0, T) \]

under \(\mathbb{Q} \), where \(W \) is a d-dim BM and \(\alpha \) (1-dim) and \(\sigma \) (d-dim) are adapted. To avoid arbitrage we should have

\[\alpha(t, T) = \sigma(t, T) \int_t^T \sigma(t, u)^* \, du. \]

This is called the HJM drift condition.
The HJM framework (cont)

The good thing about HJM models is that we immediately fit the observed initial term structure for ZCB:s.

Moreover the d-dim BM makes it possible also to capture the forward curve dynamics.

In the model we only need to specify the volatility structure.

One problem is that most non-deterministic volatility functions lead to non-Markovian forward rates.
The HJM framework and corresponding short rate dynamics

So we have

\[r(t) = f(t, t) \]

and thus

\[
\begin{align*}
\text{dr}(t) &= df(t, t) = \frac{\partial}{\partial T} f(t, T)|_{T=t} \text{dt} + dt f(t, T)|_{T=t} \\
&= \frac{\partial}{\partial T} f(t, T)|_{T=t} \text{dt} + \alpha(t, t) \text{dt} + \sigma(t, t) \text{dW}(t) \\
&= \frac{\partial}{\partial T} f(t, T)|_{T=t} \text{dt} + \sigma(t, t) \text{dW}(t),
\end{align*}
\]

since

\[
\alpha(t, t) = \sigma(t, t) \int_t^t \sigma(t, u) \ast \text{d}u = 0.
\]
Example:
The simplest possible HJM-model is the one where $\sigma(t, T) \equiv \bar{\sigma}$ where $\bar{\sigma}$ is a deterministic constant. This gives

$$df(t, T) = \bar{\sigma} \int_{t}^{T} \bar{\sigma} \, du + \bar{\sigma} \, dW(t) = \bar{\sigma}^2(T - t) \, dt + \bar{\sigma} \, dW(t),$$

and thus

$$f(t, T) = f^*(0, T) + \int_{0}^{t} \bar{\sigma}^2(T - s) \, ds + \int_{0}^{t} \bar{\sigma} \, dW(s)$$

$$= f^*(0, T) + \bar{\sigma}^2(tT - t^2/2) + \bar{\sigma}W(t).$$

This gives the short rate

$$r(t) = f(t, t) = f^*(0, t) + \bar{\sigma}^2t^2/2 + \bar{\sigma}W(t),$$

which gives

$$dr(t) = \frac{\partial}{\partial t} f^*(0, t) + \bar{\sigma}^2t \, dt + \bar{\sigma} \, dW(t), \text{ (Calibrated Ho-Lee model).}$$
LIBOR market model in the HJM framework

Recall that

\[df(t, u) = \alpha(t, u) dt + \sigma(t, u) dW(t)^Q \]

and that

\[X(t) = L_t[T_1, T_2] = \frac{1}{T_2 - T_1} \left(\frac{p(t, T_1)}{p(t, T_2)} - 1 \right) \]

\[= \frac{1}{T_2 - T_1} \left(e^{\int_{T_1}^{T_2} f(t, u) du} - 1 \right). \]

This gives the \(Q^{T_2} \)-dynamics

\[dX(t) = \frac{1}{T_2 - T_1} e^{\int_{T_1}^{T_2} f(t, u) du} \left(\int_{T_1}^{T_2} \sigma(t, u) du \right) dW^{Q^{T_2}}(t) \]

\[= \left(X(t) + \frac{1}{T_2 - T_1} \right) v(t, T_1, T_2) dW^{Q^{T_2}}(t). \]

This gives that

\[X(T_1) = \left(X(t) + \frac{1}{T_2 - T_1} \right) e^{-\frac{1}{2} \int_t^{T_1} |v(s, T_1, T_2)|^2 ds - \int_t^{T_1} v(s, T_1, T_2) dW^{Q^{T_2}}(s)} - \frac{1}{T_2 - T_1}. \]