Beyond Black-Scholes

Magnus Wiktorsson
FMSN25/MA5M04 Valuation of Derivative Assets
October 2, 2013

Stylized facts

- Non-normal daily log-returns
- Aggregational normality
- Long dependence of squared/absolute log-returns
- Heavy tailed log-returns
- Stochastic volatility
Motivation
Lévy processes
Exponentially affine models
Fourier
References
Supplementary material

What Do Real Option Prices Look like?

If the Black-Scholes model were true all we need to know is the volatility to price options.

Implied volatility 20110927 10:10 OMXS30
If the Black-Scholes model was true the implied volatility would be constant!

Implied volatility 20110927 12:55 OMXS30
If the Black-Scholes model was true the implied volatility would be constant!

Implied volatility 20110928 9:40 OMXS30
If the Black-Scholes model was true the implied volatility would be constant!

Implied volatility 20110928 17:00 OMXS30
If the Black-Scholes model was true the implied volatility would be constant!

How bad is the Black-Scholes fit?
Only 6.6% of the model prices are within the ASK-BID bounds!

How bad is the Black-Scholes fit?
Only 5.6% of the model prices are within the ASK-BID bounds!
Motivation Lévy processes Exponentially affine models Fourier References Supplementary material

How bad is the Black-Scholes fit?

Only 8.2% of the model prices are within the ASK-BID bounds!

What can we do about this?

We can use more advanced models!!

- Stochastic volatility
- Stock models with jumps (Exponential Lévy processes)
- Stock models with jumps and stochastic volatility
- Local volatility models
- Markov switched models

Heston model is not complete

Equation for Q-dynamics:

\[
\begin{align*}
 \frac{dr}{t} &= \kappa (\theta - \mu V) dt + \sigma \sqrt{V(t)} dW_t^{(1)} \\
 \frac{dS}{S} &= \mu S dt + \sqrt{V(t)} (\rho dW_t^{(1)} + \sqrt{1 - \rho^2} dW_t^{(2)})
\end{align*}
\]

How should volatility risk be priced? No general criteria available since volatility is not explicitly traded. What about VIX?

OMXS30 Heston-volatility - Estimated from option prices

Examples of Lévy processes

- Wiener process
- Poisson
- Compound Poisson
- Merton process = Compound Poisson with Gaussian increments plus a Wiener process with drift [Merton, 1976]
- Gamma process
- Normal Inverse Gaussian (NIG) process [Barndorff-Nielsen, 1997]
- Variance Gamma (VG) process [Madan and Seneta, 1990]
- Carr Geman Madan Yor (CGMY) process [Carr et al., 2002]
- Finite Moment Log Stable (FMLS) process (crash model) [Carr and Wu, 2003]
General Lévy processes

A general Lévy process can be written as

\[X(t) = \mu t + \sigma W(t) + Z(t) \]

Linear drift \(\mu \),
Brownian motion with variance \(\sigma^2 \): \(\sigma W(t) \).
Pure jump process \(Z(t) \)

\[\text{Exponentially affine stock price models under } \mathbb{Q} \]

A stockprice model is called exponentially affine if [Duffie et al., 2000]

\[E[e^{\gamma \ln(S(T))}|S(t)] = \exp(\gamma \ln(S(t)) + iy(T-t) + A(t, T, iy) + B(t, T, iy)|V(t)) \]

where \(A \) and \(B \) does not depend on \(S \) (or \(V \)). Note that \(B \) is related to stochastic volatility and is set to zero for models with out stochastic volatility. Almost all recent stockprice models fall into this class.

Examples: Black-Scholes, Heston, Bates, Merton, VG, CGMY, NIG and NIG-CIR etc ...

Not in the class: Constant elasticity of Variance (CEV), Stochastic alpha-beta-rho (SABR) and Local volatility models.

The Merton model [Merton, 1976]

\[dS_t = rS_t dt + \sigma S_t dW_t + S_t \left(e^{\delta t} - 1 \right) dN_t - S_t \lambda \left(e^{\delta t} - 1 \right) dt \]

where \(J_t \in N[\mu, \sigma^2] \), \(N \) is a Poisson process with intensity \(\lambda \).

\[E[e^{\gamma \ln(S(T))}|S(t)] = \exp(y \ln(S(t)) + iy(T-t) + A(t, T, iy)) \]

\[A(t, T, iy) = (T-t)(-\sigma^2/2 + iy^2/2 + \lambda \left(e^{\gamma \sigma^2 + iy\sigma^2/2 + \lambda t} - 1 \right)) \]

\[-iy(e^{\gamma \sigma^2/2 - 1}) \]

Note that \(S_0 = \lim_{t \to 0} S_t \).

Lévy-Khintchine representation

The characteristic function of any one-dimensional Lévy process can be written as

\[\phi(y; t) = E[\exp(iyX(t))] = \exp(\kappa(y)) \]

where

\[\kappa(y) = iy\gamma + (iy)^2\sigma^2/2 + K_c(y) \]

with

\[K_c(y) = iy\gamma + \int_{\mathbb{R}} (e^{iyx} - 1 - ixy[|x| < 1])v(dx) \]

\(\nu \) is called the Lévy measure.

Expectation and variance

Expectation

\[E[X(t)] = tk'_{\mathcal{Q}}(0)/t = t \left(\mu + \gamma + \int_{|x|>1} xv(dx) \right) \]

Variance

\[E[X(t)] = -tk''_{\mathcal{Q}}(0) = t \left(\sigma^2 + \int_{\mathbb{R}} x^2v(dx) \right) \]

But note that neither the variance nor the expectation needs to be finite!

Moment relations

The expectation \(E[|g(X(t))|] \) is finite for all \(t > 0 \) if

\[\int_{|x|>1} |g(x)|v(dx) < \infty, \]

provided that \(|g(x+y)| \leq c|g(x)| \) for some \(c > 0 \forall x, y \in \mathbb{R} \).

Condition for the discounted price process to be a \(\mathcal{Q} \)-martingale

The discounted price process is a martingale if

\[E[e^{-r(T-t)}|S(T)| \mathcal{F}_t] = S(t). \]

This is true if \(A(t, T, 1) = 0 \) and \(B(t, T, 1) = 0 \).

How bad is the Merton fit?

Only 8.4% of the model prices are within the ASK-BID bounds!
The Heston model [Heston, 1993]

\[
dV_t = \kappa (\theta - V_t) dt + \sigma \sqrt{V_t} dW^{(1)}_t \\
dS_t = \mu S_t dt + \sqrt{S_t} \sigma dW^{(2)}_t \\
E[e^{y \ln(S_T)}|S_t] = \exp(y \ln(S_t) + iy(T-t) + A(t,T,iy)) + B(t,T,iy) V(t) \\
A(t,T,iy) = \frac{\kappa \rho \sigma}{\sqrt{2}} (e^{iy(T-t)} - 1) \\
B(t,T,iy) = (1 - e^{-\kappa(T-t)}) \left(\frac{iy}{\kappa} - i \frac{\kappa}{2} \right) \\
d = \sqrt{\frac{\rho \sigma}{2} (\kappa^2 + \sigma^2)} (iy + \sqrt{y^2 + 4\rho \sigma^2}) \\
\]

Thus we can write

\[
S_t = S_0 \exp(rt + X(t)), \\
\]

where \(X(t)\) is NIG Lévy process.

The Bates model = Heston+Merton [Bates, 1996]

\[
dS_t = rS_t dt + \sqrt{V_t S_t} dW_t + S_t (e^{h} - 1) dN_t - S_t \lambda (e^{h} + e^{h}/2 - 1) dt \\
\]

where \(h \in \text{Norm}(\mu, \sigma^2)\), \(N\) is Poisson a process with intensity \(\lambda\) and \(V\) is as in Heston.

The Normal Inverse Gaussian (NIG) model [Barndorff-Nielsen, 1997]

\[
S_t = S_0 \exp(rt + X(t)), \\
\]

where \(X(t)\) is NIG Lévy process.

The NiGCIR model [Carr et al., 2003b]

This is a stochastic volatility (stochastic time change) model with jumps

\[
S_t = S_0 \exp(rt + X(t)) \\
I_t = \int_0^t V ds \\
\]

where \(X\) is a NIG Lévy process, and \(V\) is as in Heston.

Inverse Fourier transform

Now we have that

\[
\max(S_T - K, 0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iz} e^{(1+i\rho)z} z^{1/2 + 1/2} d\omega, \ z > 0 \\
\]

Thus we can write

\[
\Pi(t) = \mathbb{E}^S \left[e^{-\rho(T-t)} \max(S_T - K, 0) S_T \right] = \mathbb{E}^S \left[e^{-\rho(T-t)} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iz} e^{(1+i\rho)z} z^{1/2 + 1/2} d\omega S_T \right] \\
= e^{\rho(T-t)} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iz} \mathbb{E}^S \left[e^{(1+i\rho)z} S_T \right] z^{1/2 + 1/2} d\omega \\
\]

For pricing exponentially affine models

Let \(\tilde{y} = \ln(S_T), \ k = \ln(K)\)

- The Fourier transform for the pay-off of a European call.

\[
\int_k^\infty e^{\tilde{y} \max(\tilde{y} - k, 0)} d\tilde{y} = \frac{e^{(1+i\rho)z}}{z^{1/2 + 1/2}}, \ \text{if} \ \text{Re} z > 0 \\
\]

- The Fourier transform for the pay-off of a European put.

\[
\int_k^\infty e^{\tilde{y} \max(\tilde{y} - k, 0)} d\tilde{y} = \frac{e^{(1+i\rho)z}}{z^{1/2 + 1/2}}, \ \text{if} \ \text{Re} z < 0 \\
\]

- The Fourier transform for \(-\min(S(T), K)\)

\[
- \int_k^\infty e^{\tilde{y} \min(\tilde{y}, k)} d\tilde{y} = \frac{e^{(1+i\rho)z}}{z^{1/2 + 1/2}}, \ \text{if} \ -1 < \text{Re} z < 0 \\
\]
Use that S_T comes from an exponentially affine model.

Then

$$
\mathbb{E}[e^{\delta S_T} | S_t] = e^{\phi(t)(T-t)(\alpha + 1) + \beta(t) T + \beta(t) T z + 1) N_t}
$$

So that

$$
\Pi(t) = e^{-\phi(t)(T-t) T - \frac{1}{2} \alpha(\alpha + 1) T z + 1) T + \beta(t) T e^Q(t)} w \int_{\mathbb{R}} e^{-\frac{1}{2} \alpha(\alpha + 1) T z + 1) T + \beta(t) T e^Q(t)} w \, dw
$$

We can use the fast Fourier transform. We can use quadrature methods.

Calculation of the inverse Fourier transform

We can use the fast Fourier transform.

We can use quadrature methods.

$$
\Pi(t) = \sum_{j=1}^{N} w_j^{(N)} e^{i \omega_j (t - T)} \frac{1}{\pi} \text{Re} \left(e^{-\frac{1}{2} \alpha(\alpha + 1) T z + 1) T + \beta(t) T e^Q(t)} w \, dw \right)
$$

where $w_j^{(N)}$ are weights coming from the Gauss-Laguerre quadrature method.

Ito's formula for Lévy processes

$$
\frac{df(X(t))}{f(X(t))} = f'(X(t)) \mu dt + f'(X(t)) \sigma^2 / 2 dt + \sigma f'(X(t)) dW(t) + f'(X(t)) dZ(t) - f'(X(t)) d\Delta Z(t)
$$

where $\Delta Z(t)$ is the jump in Z.

Origin of NIG

The original NIG distribution depend on four parameters $(\alpha, \beta, \delta, \mu)$ and it is related to two independent Brownian motions W_1 and W_2. Let W_1 be a Brownian motion starting at μ with drift β and let W_2 be a Brownian motion starting at 0 with drift $\sqrt{\alpha^2 - \beta^2}$. Let $\xi = \inf \{ s > 0 : W_2(s) > \delta \}$. Now $X = W_1(\xi)$ has a NIG distribution with parameters $(\alpha, \beta, \delta, \mu)$ and

$$
E[e^{\lambda X}] = \exp(\nu \mu + \delta(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + i \nu)^2})).
$$

In order to get the right model for stocks we should choose

$$
\mu = -\delta(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + 1)^2})).
$$