Spatial Statistics with Image Analysis
Lecture 12

Johan Lindström

December 10, 2018

Lecture L12

Home assignment 3

General MRFs
- Integer Valued Fields
- Pseudo-likelihood

Pixel classification

Markov Chain Monte Carlo
- Convergence

Home assignment 3 — Details
- Corrupt Pixels
- Space-Time Data

Home assignment 3

1. Pixel classification using MRFs
 - In classification it is reasonable to assume that the class belonging of one pixel is influenced by its neighbours.
 - Use a **MRF to classify pixels** in fMRI data.

2. Spatio-Temporal modelling
 - One way of modelling spatio-temporal data is using a set of temporal basis functions with spatially varying regression coefficients.
 - Use a set of **GMRFs** to model the spatial variation in regression coefficients for fMRI data.

3. Corrupted data (Classification and Gibbs-sampling)
 - Previously we have reconstructed missing pixel values.
 - A more realistic setting is that the pixels might not be missing, but rather replaced by incorrect values.

Written and oral presentation. The report is due 17:00 on the day before the presentation.
Integer valued fields — Joint distribution

- The global probability function for the simple integer field model is:

 $$p(x) \propto \exp \left(\sum_{i=1}^{N} \alpha x_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j \in N_i} \beta \mathbb{I}(x_j = x_i) \right)$$

 we could consider different neighbourhood strengths for different classes (i.e., βx_i).

- The conditional distribution for a pixel x_i given the rest of the field is

 $$p(x_i | x_j, j \neq N_i) = \frac{\exp \left(\alpha x_i + \beta \sum_{j \in N_i} \mathbb{I}(x_j = x_i) \right)}{\sum_{k=1}^{K} \exp \left(\alpha_k + \beta \sum_{j \in N_i} \mathbb{I}(x_j = k) \right)}.$$

Pseudo-likelihood estimation

For the estimation the set of points, I, over which we compute the approximate likelihood

$$\log PL(x, \alpha, \beta) = \sum_{k} \alpha_k \sum_{i \in I} z_{ik} + \beta \sum_{k} \sum_{i \in I} z_{ik} f_{ik} - \sum_{i \in I} \log \left(\sum_{k} \exp(\alpha_k + \beta f_{ik}) \right)$$

can be selected as either a set of **conditionally independent points** leading to one estimate for each set; or as **all points** in the field.

Conditionally independent points:
- Called **coding-method**.
- Final estimate obtained by averaging each individual estimate.
- Lower bias.

All points:
- Called **pseudo-likelihood**.
- Nice asymptotic properties (consistent, Normal).
- Lower variance.
Bayesian hierarchical modelling (BHM)

A hierarchical model is constructed by systematically considering components/features of the data, and how/why these features arise.

Bayesian hierarchical modelling

A Bayesian hierarchical model typically consists of (at least)

Data model, \(p(y|x, \theta) \): Describing how observations arise given the latent variables \(x \) and parameters \(\theta \).

Latent model, \(p(x|\theta) \): Describing how the latent variables (reality) behaves, given parameters.

Parameters, \(p(\theta) \): Describing our, sometimes vague, prior knowledge of the parameters.

Object classification as a BHM

Treating the classification, with spatial dependence, as a BHM we have

Data model, \(p(y|x, \theta) \): Distribution of a pixel given its class belonging \(x \) and parameters \(\{\mu_k, \Sigma_k\}_{k=1}^K \).

\[y_i \mid x_i = k \in \mathcal{N}(\mu_k, \Sigma_k). \]

Latent model, \(p(x|\theta) \): Describing how common and spatially contiguous each class is.

\[p(x_i \mid x_j, j \in \mathcal{N}_i, \theta) \propto \exp(\alpha x_i + \beta f_{i,x}). \]

Parameters, \(p(\theta) \): Describing our vague prior knowledge of the parameters.
Posterior fields — DMRF

Model with general observations and latent DMRF,

\[
p(y_i | x_i, \theta), \quad p(x_i | x_j, j \in N_i, \theta) \propto \exp (\alpha_{k_i} + \beta f_{i,x_i}).
\]

The posterior becomes a non-stationary DMRF,

\[
P(x_i | x_j, j \in N_i, y_i, \theta) \propto p(y_i | x_i, \theta) \exp (\sum_{k} \alpha_{k_i} + \beta \sum_{j \in N_i} f_{i,j}).
\]

Inference for the entire model is now obtained from a Gibbs-algorithm that draws samples from:

1. The posterior DMRF using `mrf_gaussian_post.m` and `mrf_sim.m`.
2. The class parameters `gibbs_mu_Sigma.m`.
3. The parameters of the DMRF `gibbs_alpha_beta.m`.

Sampling from \(\alpha \) and \(\beta \)

Estimates of the parameters (\(\alpha \) and \(\beta \)) for the DMRF are given by the log-pseudo-likelihood

\[
\log(P_L(\alpha, \beta)) = \sum_k \alpha_k \sum_i z_{ik} + \beta \sum_k \sum_j z_{ik} f_{ik} - \sum_i \log \left(\sum_k \exp(\alpha_k + \beta f_{i,x_i}) \right)
\]

To obtain reasonable samples of \(\alpha, \beta \) we need to sample from this distribution wrt. \(\alpha, \beta \).

This distribution is hard to sample from and we use a random-walk Metropolis-Hastings algorithm.
Sampling from complex distributions

We have previously introduced the Gibbs sampler to sample from complex distributions by sequentially sampling from the simpler conditional distributions.

Metropolis-Hasting is an alternative when the conditional distributions are hard (impossible) to sample from.

Metropolis-Hasting

Given a target density \(p(x) \) from which we want to sample and a proposal distribution \(q(x^{\text{new}}|x^{\text{old}}) \). We construct a Markov chain \(\{x^{(0)}, x^{(1)}, \ldots, x^{(T)}\} \) has stationary distribution \(p(x) \) by:

1. Given the current state \(x^{(t)} \) draw a new sample \(x^{*} \in q(x^{(t+1)}|x^{(t)}) \) from the proposal distribution.
2. Compute the acceptance probability
 \[
 \alpha(x^{(t)}, x^{*}) = \min\left(1, \frac{p(x^{*})q(x^{(t)}|x^{*})}{p(x^{(t)})q(x^{*}|x^{(t)})}\right).
 \]
3. Set the next value in the chain to \(x^{(t+1)} = x^{*} \) with probability \(\alpha \) and to \(x^{(t+1)} = x^{(t)} \) with probability \(1 - \alpha \).
4. Repeat from 1.

A look at \(\alpha(x^{(t)}, x^{*}) \)

First ignore the proposal distribution \(q(x^{*}|x^{(t)}) \):

- \(p(x^{*})/p(x^{(t)}) \) says accept (keep) the proposed value, \(x^{*} \) if it is “better” than the old value \(x^{(t)} \).
- If the new value is “worse” than the old accept it with a probability proportional to how much worse.

A word on notation:
The proposal distribution \(q(x^{\text{new}}|x^{\text{old}}) \) is also be called the proposal kernel \(q(x^{\text{old}}, x^{\text{new}}) \) (Note the order!).
A look at $\alpha(x(t), x^*)$

However, some states may be easier to reach than others, $q(x^*|x(t))$ compensates for this:

- If it is easy to reach x^* from $x(t)$, the denominator $q(x^*|x(t))$ will reduce the acceptance probability.
- It is easy to get back to $x(t)$ from x^*, the nominator $q(x(t)|x^*)$ will increase the acceptance probability.

Convergence — Burn in

Since the chain is started at an arbitrary point it needs to converge to the stationary distribution before we can use the samples.

The time for convergence is determined by looking at the chain (c.f. the Gibbs sampler for a DMRF) and then discarding the initial samples as **Burn in**.

Convergence diagnostics (cont.)

A simulated field (4-neighbours, $\alpha = 0$, $\beta = 1$) and the corresponding trajectory of the log-likelihood:
Symmetric proposal — Random-Walk

Select the proposal kernel so that

\[q(x^* | x^{(t)}) = q(x^{(t)} | x^*) \]

- The acceptance probability reduces to

\[\alpha(x^{(t)}, x^*) = \min \left(1, \frac{p(x^*)}{p(x^{(t)})} \right). \]

- Commonly this is \(x^* = x^{(t)} + \varepsilon \) with \(\varepsilon \in \mathbb{N}(0, \sigma^2) \).

Selecting \(\sigma^2 \)

The mixing depends on the proposal variance \(\sigma^2 \)

- Good acceptance rate is around 30%.
- Smaller values of \(\sigma^2 \) increases the acceptance rate.
- Larger values of \(\sigma^2 \) decreases the acceptance rate.
- Bad mixing leads to various problems, including lack of convergence.
- \(\sigma^2 \) needs to be choosen “suitably” (tuning).

This is not an issue for the Gibbs-sampler since we “accept” all proposals.

Mixing

Mixing for three chains with different proposal variance \(\sigma^2 \).

Good mixing. Too large \(\sigma^2 \). Too small \(\sigma^2 \).
Corrupt Pixels — A model

Pixels have been randomly replaced by incorrect values. A reasonable model, assuming an image with pixel values \(y \in [0, 1] \), is:

Data model:

\[
y(s_i) | x, z \sim \begin{cases} N(x(s_i), \sigma^2) & \text{if } z(s_i) = 0 \\ U(0, 1) & \text{if } z(s_i) = 1 \end{cases}
\]

Latent model I: for the image

\[
x|\kappa, \tau \sim N(0, Q^{-1}(\kappa, \tau))
\]

Latent model II: for independent bad pixels

\[
p(z_i = k | p_c) = \begin{cases} p_c, & \text{if } k = 0 \\ 1 - p_c, & \text{if } k = 1 \end{cases}
\]

Corrupt Pixels — Estimation

To estimate the model you will be using Gibbs sampling

1. Write down the full posterior for parameters \(\theta = \{\sigma^2, \kappa, \tau, p_c\} \) and latent fields \((x, z) \):

\[
p(x, z, \theta | y) \propto p(y | x, z, \theta) p(x | \theta) p(z | \theta)
\]

\[
= p(y | x, z, \sigma^2) p(x | \kappa, \tau) p(z | p_c)
\]

2. Compute the conditional posteriors
 - \(p(x | z, \theta, y) \) — Reconstruction in a GMRF
 - \(p(z | x, \theta, y) \) — Classification
 - \(p(\sigma^2 | x, z, y) \) — Inverse-Gamma
 - \(p(\tau | x, z, y) \) — Gamma
 - \(p(p_c | x, z, y) \) — Beta (e.g. Dirichlet)

3. Construct a Gibbs sampler by alternating samples from the above conditional distributions.

Corrupt Pixels — Comments

- We will keep \(\kappa \) fixed. It can be sampled jointly with \(\tau \) using a random-walk Metropolis-Hastings.
- You might have to expand the field from \(x \) to \(\tilde{x} = [x^T \beta^T]^T \) to include a non-zero mean.
- Reordering should only be needed for the sampling step

\[
p(x | z, \theta, y)
\]

where the sparsity of \(R_{x|y} \) may matter.
Corrupt Pixels — Selected Posteriors

- x and z are latent fields giving the **true image**, and the **bad pixels** respectively.
- The posterior for a GMRF was given in Lecture 7:
 \[
 x|y, z, \theta \sim N(\mu_{x|y}(z, \theta), Q_{x|y}^{-1}(z, \theta)),
 \]
 where $\mu_{x|y}$ and $Q_{x|y}$ depend on z through the observation matrix $A(z)$.
- $z|y, x$, is a **Bayesian classification** problem (see Lecture 9)
 \[
 p(z_i = 0|y_i, x_i, \theta) = \frac{p(y_i|z_i = 0, x_i, \theta) p(z_i = 0)}{\sum_{k=0}^{1} p(y_i|z_i = k, x_i, \theta) p(z_i = k)} = \frac{p_N(y_i|x_i, \theta) pc}{p_N(y_i|x_i, \theta) pc + 1 \cdot (1 - pc)}
 \]

Space-Time Data — A model

The fMRI data used for the classification project can also be seen as a spatio-temporal dataset
\[
 y(s, t) = \sum_k \beta_k(s) X_k(t) + \varepsilon(s, t)
 \]
where $\beta_k \sim N(0, \tau^{-1}_c)$ and $X_k(t) \sim N(0, \tau^{-1}_X Q_0^{-1})$.

Here $X_k(t)$ are known temporal functions, marking the active blocks, or time periods, of the fMRI experiment.
The Data

The data consists of fMRI data arranged in a $87 \times 102 \times 160$ array (i.e., 87×102 pixels and 160 time points). Column stacking the image gives a 8874×160 matrix where each row represents one pixel.

A second column stacking gives a vector as:

\[
\begin{bmatrix}
 y(s_1, t_1) & y(s_1, s_2) & \ldots & y(s_1, t_T) \\
 y(s_2, t_1) & y(s_2, s_2) & \ldots & y(s_2, t_T) \\
 \vdots & \vdots & \ddots & \vdots \\
 y(s_n, t_1) & y(s_n, s_2) & \ldots & y(s_n, t_T)
\end{bmatrix} \rightarrow \mathbf{y} = \\
\begin{bmatrix}
 y(s_1, t_1) \\
 y(s_2, t_1) \\
 \vdots \\
 y(s_n, t_1) \\
 y(s_1, t_2) \\
 y(s_2, t_2) \\
 \vdots \\
 y(s_n, t_2) \\
 \vdots \\
 y(s_1, t_T) \\
 y(s_2, t_T) \\
 \vdots \\
 y(s_n, t_T)
\end{bmatrix}
\]

The Model — Matrix Form

Given the column stacking we can write the model as

\[
\begin{bmatrix}
 y(s_1, t_1) \\
 y(s_2, t_1) \\
 \vdots \\
 y(s_n, t_1) \\
 y(s_1, t_2) \\
 y(s_2, t_2) \\
 \vdots \\
 y(s_n, t_2) \\
 \vdots \\
 y(s_1, t_T) \\
 y(s_2, t_T) \\
 \vdots \\
 y(s_n, t_T)
\end{bmatrix} = \begin{bmatrix}
 \sum_k \beta_k(s_1) X_k(t_1) \\
 \sum_k \beta_k(s_2) X_k(t_1) \\
 \vdots \\
 \sum_k \beta_k(s_n) X_k(t_1) \\
 \sum_k \beta_k(s_1) X_k(t_2) \\
 \sum_k \beta_k(s_2) X_k(t_2) \\
 \vdots \\
 \sum_k \beta_k(s_n) X_k(t_2) \\
 \vdots \\
 \sum_k \beta_k(s_1) X_k(t_T) \\
 \sum_k \beta_k(s_2) X_k(t_T) \\
 \vdots \\
 \sum_k \beta_k(s_n) X_k(t_T)
\end{bmatrix} + \begin{bmatrix}
 \epsilon(s_1, t_1) \\
 \epsilon(s_2, t_1) \\
 \vdots \\
 \epsilon(s_n, t_1) \\
 \epsilon(s_1, t_2) \\
 \epsilon(s_2, t_2) \\
 \vdots \\
 \epsilon(s_n, t_2) \\
 \vdots \\
 \epsilon(s_1, t_T) \\
 \epsilon(s_2, t_T) \\
 \vdots \\
 \epsilon(s_n, t_T)
\end{bmatrix}
\]

The Model — Matrix Form

For a 2×2 field with 2 time points we have

\[
\begin{bmatrix}
 y(s_1, t_1) \\
 y(s_2, t_1) \\
 y(s_3, t_1) \\
 y(s_4, t_1) \\
 y(s_1, t_2) \\
 y(s_2, t_2) \\
 y(s_3, t_2) \\
 y(s_4, t_2)
\end{bmatrix} = \begin{bmatrix}
 \sum_k \beta_k(s_1) X_k(t_1) \\
 \sum_k \beta_k(s_2) X_k(t_1) \\
 \sum_k \beta_k(s_3) X_k(t_1) \\
 \sum_k \beta_k(s_4) X_k(t_1) \\
 \sum_k \beta_k(s_1) X_k(t_2) \\
 \sum_k \beta_k(s_2) X_k(t_2) \\
 \sum_k \beta_k(s_3) X_k(t_2) \\
 \sum_k \beta_k(s_4) X_k(t_2)
\end{bmatrix} + \begin{bmatrix}
 \epsilon(s_1, t_1) \\
 \epsilon(s_2, t_1) \\
 \epsilon(s_3, t_1) \\
 \epsilon(s_4, t_1) \\
 \epsilon(s_1, t_2) \\
 \epsilon(s_2, t_2) \\
 \epsilon(s_3, t_2) \\
 \epsilon(s_4, t_2)
\end{bmatrix}
\]
The Model — Kronecker product

Rewriting the sum over k as a matrix product (think regression) we have:

\[
\begin{pmatrix}
\gamma_1(t_1) \\
\gamma_2(t_1) \\
\gamma_3(t_1) \\
\gamma_4(t_1)
\end{pmatrix}
=
\begin{pmatrix}
x_1(t_1) & 0 & 0 & 0 \\
x_2(t_1) & 0 & 0 & 0 \\
x_3(t_1) & 0 & 0 & 0 \\
x_4(t_1)
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4
\end{pmatrix}
+
\begin{pmatrix}
\epsilon_1(t_1) \\
\epsilon_2(t_1) \\
\epsilon_3(t_1) \\
\epsilon_4(t_1)
\end{pmatrix}
\]

Which, using kronecker products becomes

\[
Y = (X \otimes I_{n \times n}) \beta + \epsilon
\]

Noting that the β-fields are stacked after each other in β we have that

\[
\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \in N \left(0, \begin{bmatrix} \tau_{Q,1} & 0 & 0 \\ 0 & \tau_{Q,2} & 0 \\ 0 & 0 & \tau_{Q,3} \end{bmatrix} \otimes Q_0 \right)^{-1}
\]

where

\[
Q_0 = \begin{cases} G & \text{if CAR} \\ G^T G & \text{if SAR} \end{cases}
\]

The Model — Observational Precision

Noting that the ϵ-fields are stacked in the same order as Y and that we would like different variances for each location we have

\[
\epsilon(t, s) \in N \left(0, \tau^{-1}_\epsilon(s) \right)
\]

or in vector form

\[
\epsilon = \begin{bmatrix} \epsilon(s_1, t_1) \\ \epsilon(s_2, t_1) \\ \vdots \\ \epsilon(s_n, t_1) \\ \epsilon(s_1, t_2) \\ \vdots \\ \epsilon(s_n, t_r) \end{bmatrix} \in N \left(0, \text{diag} \begin{bmatrix} \tau_{\epsilon}(s_1) \\ \tau_{\epsilon}(s_2) \\ \vdots \\ \tau_{\epsilon}(s_n) \end{bmatrix} \right)^{-1}
\]
The Model — Observational Precision

Collecting the \(\tau_\varepsilon\) values into a \(n \times 1\) vector we have a precision matrix for \(\varepsilon\) with diagonal element given by

\[
\text{diag}(Q_\varepsilon) = \begin{bmatrix}
\tau_\varepsilon(s_1) \\
\tau_\varepsilon(s_2) \\
\vdots \\
\tau_\varepsilon(s_n)
\end{bmatrix} = 1_{T \times 1} \otimes \tau_\varepsilon
\]

Space-Time Data — Estimation

To estimate the model you will be using Gibbs sampling

Write down the full posteriors for

- \(p(\beta|y, \tau_\varepsilon, \tau_\phi)\) — Reconstruction in a GMRF
- \(p(\tau_0|Y, \beta, \tau_\varepsilon)\) — Gamma
- \(p(\tau_\varepsilon|Y, \beta, \tau_0)\) — Gamma

Computations for \(p(\tau_0|Y, \beta, \tau_\varepsilon)\) are very similar to those given for the corrupted pixels.

Matlab: Sparse matrices

- For sparse identity matrix use \texttt{speye} (not \texttt{eye})
- For diagonal matrices use \texttt{spdiags} (not \texttt{diag})
- Kronecker of sparse matrices is still sparse.
- When reordering \(Q\) for e.g. simulation:
 > %compute reorder
 > p = amd(Q);
 > %permute observation matrix (for mean)
 > A_p = A(:,p);
 > %permute and compute choleskey
 > R = chol(Q(p,p));
 > %sample or compute mean
 > X = R \ randn(size(R,1),1);
 > %PARENTHESES MATTER!
 > EX = R \ (R' \ (A_p'*Y));
 > %recover original order
 > X(p) = X; EX(p) = EX;
Project comparison

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Coding</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>L–M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Project 2</td>
<td>V.H.</td>
<td>M</td>
<td>L–M</td>
</tr>
<tr>
<td>Classification Gibbs:</td>
<td>L</td>
<td>L–M</td>
<td>H</td>
</tr>
<tr>
<td>Spatio-Temporal:</td>
<td>M</td>
<td>H</td>
<td>L–M</td>
</tr>
<tr>
<td>Corrupted:</td>
<td>M–H</td>
<td>M</td>
<td>L</td>
</tr>
</tbody>
</table>