Spatial Statistics with Image Analysis
Lecture 11

Johan Lindström

December 4, 2017

Lecture L11

Home assignment 3

General MRFs
Gibbs distributions

Gibbs sampling
Block updating
Parallel updating
Convergence

Parameter estimation
Notation for discrete MRFs
Pseudo-likelihood
Example

1. Pixel classification using MRFs
 ▶ In classification it is reasonable to assume that the class belonging of one pixel is influenced by its neighbours.
 ▶ Use a MRF to classify pixels in fMRI data.

2. Spatio-Temporal modelling
 ▶ One way of modelling spatio-temporal data is using a set of temporal basis functions with spatially varying regression coefficients.
 ▶ Use a set of GMRFs to model the spatial variation in regression coefficients for fMRI data.

3. Corrupted data (Classification and Gibbs-sampling)
 ▶ Previously we have reconstructed missing pixel values.
 ▶ A more realistic setting is that the pixels might not be missing, but rather replaced by incorrect values.

Written and oral presentation. The report is due 17:00 on the day before the presentation.
General Markov random fields

We want models, defined for locations s_i, which fulfil the Markov condition:

$$p(x_i | \{x_j : j \neq i\}) = p(x_i | \{x_j : j \in N_i\})$$

for the neighbours N_i

Gibbs distributions

Originally from mathematical physics:

$$p(x) = \frac{1}{Z} \exp \left(-\frac{W(x)}{kT} \right),$$

where W is the energy of a state x, T is a temperature, k is some physical constant, and Z is an (unknown) normalising constant.

Gibbs distributions

- Neighbourhood system $N_i = \{s_j ; si is a neighbour of si\}$.
- Cliques C.
- Potentials $V_C(x; \theta)$.
- Parameters θ.
- Density/probability function

$$p(x|\theta) = \frac{1}{\sum_{\theta}} \exp \left(\sum_C V_C(x; \theta) \right)$$

- Conditional distributions

$$p(x_i | x_j, j \in N_i, \theta) = \frac{1}{Z_{i,\theta}} \exp \left(\sum_{C: j \in C} V_C(x; \theta) \right)$$

Gibbs Normalizing constant

- The normalizing constant Z_θ sums over possible combination of x.
- For a 3×3 image with $x(i,j) \in \{0, 1\}$ there exists 2^9 possible combinations.
- For a 10×10 image there exists $2^{100} \approx 10^{30}$ possible combinations. Thus in reality not possible to compute Z_θ.
Example: Integer valued fields

- Integer pixels, when only first and second order cliques are used:
 \[V_{(i)}(x) = \alpha_k, \text{ when } x_i = k \]
 \[V_{(ij)}(x) = \beta_{kl}, \text{ when } x_i = k \text{ and } x_j = l. \]

- Simple case preferring equal neighbours:
 \[\beta_{kl} = \begin{cases}
 \beta_k, & \text{if } k = l \\
 0, & \text{otherwise}.
\end{cases} \]
 or
 \[\beta_{kl} = \begin{cases}
 \beta, & \text{if } k = l \\
 0, & \text{otherwise}.
\end{cases} \]

- If each pixel takes a value in the set \(\{1, 2, \ldots, K\} \), the space of possible outcomes for \(N \) pixels \(x \) is \(\Lambda = \{1, 2, \ldots, K\}^N \)

Integer valued fields — Joint distribution

- The global probability function for the simple integer field model is:
 \[p(x) \propto \exp \left(\sum_{i=1}^{N} \alpha_{x_i} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j \in N_i} \beta I(x_j = x_i) \right) \]

- The conditional distribution for a pixel \(x_i \) given the rest of the field is
 \[p(x_i | x_j, j \neq i) = \frac{p(x)}{p(x_j, j \neq i)} = \frac{p(x)}{\sum_{k=1}^{K} p(x_i = k, \{x_j, j \neq i\})} \]

Integer valued fields — Conditional distributions

- The conditional distribution can be found by simply removing all terms in the global probability function that do not depend on \(x_i \):
 \[p(x_i | x_j, j \in N_i) = \frac{\exp \left(\alpha_{x_i} + \beta \sum_{j \in N_i} I(x_j = x_i) \right)}{\sum_{k=1}^{K} \exp \left(\alpha_k + \beta \sum_{j \in N_i} I(x_j = k) \right)} \]

- If \(\beta > 0 \) we obtain fields where neighbouring pixels strive to be equal.
Gibbs sampling

- Sampling from the distribution \(p(x) \) is hard.
- However the conditional distributions
 \[
 p \left(x_i | x_j, j \neq i \right) = p \left(x_i | x_j, j \in N_i \right)
 \]
 are straightforward to obtain and simulate from.
- **Gibbs sampling** says that we can simulate from a complex distribution \(p(x) \) by repeatedly simulating from the conditionals \(p \left(x_i | x_j, j \neq i \right) \).

Block-update Gibbs-sampling

- Sequential Gibbs-sampling is often slow.
- Can we use the Markov property better?
 - Compute the conditional distribution for an entire block of neighbouring pixels, allowing us to update larger sets of blocks.
 - But, computing the conditional for a large enough block may be difficult.

Parallel Gibbs-sampling

- Can we update more than one pixel at the same time, without having them interfere with each other?
 - In the 4-neighbour system, each pixel is conditionally independent of its diagonal "neighbours", given its 4-neighbours.
 - Looping over conditionally independent pixels will give exactly the same result as updating them simultaneously.
 - Partition the pixels into conditionally independent sets, and update all pixels in each set in parallel. Loop over these sets, forwards and backwards, or choose a set at random.
Convergence diagnostics

- How can we tell whether the simulation has converged to the correct distribution or not? How many iterations are required?
- This is a difficult problem, and no clear answers exist.
- Various heuristics can be applied:
 - Plot the trajectory of the (unnormalised) log-likelihood
 - Plot the trajectory of various functionals of the field, such as the relative amount of the different classes.
 - When the trajectories have oscillated around a constant long enough, the simulation is assumed to have converged.

Convergence diagnostics (cont.)

A simulated field (4-neighbours, \(\alpha = 0, \beta = 1 \)) and the corresponding trajectory of the log-likelihood:
Parameter estimation for discrete MRF:s

- **Maximum likelihood:**
 - The normalising factor Z_θ depends on the parameters.
 - Z_θ is typically troublesome or impossible to calculate.
 - This makes direct maximum likelihood estimation hard/impossible.

- **Pseudo-likelihood estimation:**
 - The normalisation constants $Z_{\alpha,\theta}$ for the conditional distributions are usually simple to compute.
 - Maximise the product of all the full conditional distributions
 \[
 \hat{\theta} = \arg \max_\theta \prod_i p(x_i|x_j, j \in N_i; \theta)
 \]
 with respect to the parameters θ.
 - It can be shown that Pseudo-likelihood estimates share many of the properties found in maximum likelihood estimation.

Useful notation for a discrete MRF

To simplify the notation, we rewrite the MRF using a multi-dimensional indicator field:

$z_{ik} = \mathbb{I}(x_i = k)$

$f_{ik} = \sum_{j \in N_i} z_{jk}$

$P(x_i = k) = E(z_{ik})$

For the discrete model we have

$P(x_i = k|x_j, j \in N_i, \alpha, \beta) = E(z_{ik}|z_j, j \in N_i, \alpha, \beta) = \frac{\exp(\alpha_k + \beta f_{ik})}{\sum_l \exp(\alpha_l + \beta f_{il})} = E(z_{ik}|f_i, \alpha, \beta)$

Pseudo-likelihood estimation — Identifiability

For the discrete model the log-pseudo-likelihood is

\[
\log PL_z(\alpha, \beta) = \sum_k \alpha_k \sum_i z_{ik} + \beta \sum_k \sum_i z_{ik} f_{ik} = -\sum_i \log \left(\sum_k \exp(\alpha_k + \beta f_{ik}) \right)
\]

- α_k might not be identifiable. Take:
 \[a_k = \exp(\alpha_k), \quad \text{and require that} \quad \sum_k a_k = 1\]

- PL_z is not guaranteed to be bounded for large β. Introduce a prior on β

\[\beta \in \mathcal{N}(0, \sigma^2)\]
Simulated fields and parameter estimation ($\beta; \alpha = 0$)

\[
\begin{align*}
&0.25 \\
&1 \\
&5
\end{align*}
\]

Pseudo-likelihood estimation — Example

Given a 4×4-image,

\[
\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{pmatrix}
\]

and a 4-neighbourhood we want to estimate β (assuming $\alpha = 0$). The pseudo-likelihood for the \times conditionally independent pixels,

\[
\begin{align*}
&\times \quad \times \quad \times \\
&\times \quad \times \quad \times \\
&\times \quad \times \quad \times \\
&\times \quad \times \quad \times
\end{align*}
\]

is $L = e^{7\beta}(1 + e^{2\beta})^{-4}(1 + e^{\beta})^{-4}$ with maximum for $\hat{\beta} \approx 0.202$ ($\beta \approx 0.343$ for the other set of conditionally independent pixels)

Pseudo-likelihood estimation

For the estimation the set of points, I, over which we compute the approximate likelihood

\[
\log PL_I(\alpha, \beta) = \sum_k \alpha_k \sum_{i \in I} z_{ik} + \beta \sum_k \sum_{i \in I} z_{ik} f_{ik} \]

\[
- \sum_{i \in I} \log \left(\sum_k \exp(\alpha_k + \beta f_{ik}) \right)
\]

can be selected as either a set of \textit{conditionally independent points} (as in the example above) leading to one estimate for each set; or as \textit{all points} in the field.
Pseudo-likelihood estimation

Conditionally independent points:
- Called coding-method.
- Final estimate obtained by averaging each individual estimate.
- Lower bias.

All points:
- Called pseudo-likelihood.
- Nice asymptotic properties (consistent, Normal).
- Lower variance.