Matlab tips

1. Basic Matlab commands

```matlab
x = randn(20,1); % A vector with 20 N(0,1) random numbers.
whos; % List current variables, with size information.
[n m d] = size(x); % Get size of x.
x(end-4:end); % Get the five last elements in x.
```

2. Multiple quadratic forms.

We want to calculate $b_i = x_i^T A y_i$, for a large number of vectors x_i and y_i, stored as matrices (x and y) with one vector per column (i.e. $x(:,i) = x_i$).

Start by calculating $z = A * y$. Then each b_i is given by $b(i) = x(:,i)^T z(:,i)$. This can be written as $b(i) = \text{sum}(x(:,i) .* z(:,i),1)$, where .* is element-wise multiplication, and the entire vector of b_is is given by $b = \text{sum}(x .* z,1)$, eliminating the need for a for-loop.


```matlab
x = double(lanread('rio.lan')); % x: m-n-d
mnd = size(x); % mnd=[m,n,d]
mn = mnd(1) * mnd(2); % The total number of pixels.
y = colstack(x); % y: mn-d
mean_y = mean(y,1); % mean_y: 1-d
y = y - repmat(mean_y, [mn, 1]); % Mean subtracted.
Sigma = (y' * y) / mn; % Covariance estimate, d-d.
```

4. Some plot commands.

(a) Functions of two variables.

```matlab
x = linspace(-5,5,25); % 25 linearly spaced values from -1 to 5.
y = logspace(-1,1,25); % 25 log spaced values from 10^-1 to 10^1.
[X,Y] = meshgrid(x,y); % Create a 2D grid.
f = exp(-1./Y.*(2+X.^2))./Y; % A function of two variables.
surf(X,Y,f); % Plot the function.
```

(b) Images, Scatterplots and histograms.

```matlab
x = double(lanread('rio.lan'))/255; % x: m-n-d
y = colstack(x); % y: mn-d
imagesc(x(:, :, 1)) % Plot with scaled image intensities.
image(rgbimage(x(:, :, [1,2,3]))) % True-colour image.
hist(y(:, :, 1),256) % Histogram with 256 "bins".
hist2(y(:,1:2),100); % 2D histogram, channel 1 vs 2.
hist2(y(:,[1 3]),100); % 2D histogram, channel 1 vs 3.
```
Spatial Statistics, Matlab tips

plot(y(:,1),y(:,2),'.') % Scatter plot, channel 1 vs 2.
I=1:50:size(y,1); % Index vector.
plot(y(I,1),y(I,2),'.') % Scatter plot with fewer data points.
plot3(y(I,1),y(I,2),y(I,3),'.') % 3D scatter plot.

(c) Surfaces and colouring.

z=peaks(100); % A sample surface.
surf(z) % Surface 3D-plot with "realistic" illumination.
surfl(z) % Surface 3D-plot with "realistic" illumination.
shading flat % Don’t show grid lines.
shading interp % Interpolate colours.
colorbar % Adds colorbar relating colours to z-value.
caxis([0 10]) % Changes range of colouring.

colormap(gray(256)) % Set gray colormap with 256 levels.
colormap(jet(256)) % Reset to default colormap.
help graph3d % Functions for three dimensional graphs,
% includes a list of colormaps.

5. Visually appealing plots of LANDSAT data.

x=double(lanread('rio.lan'))/255;
image(rgbimage(x(:,:,[1,2,3]))) % BGR mapped to BGR
image(rgbimage(x(:,:,[2,3,4]))) % Blueshifted data, mapping
% G->B, R->G, NearIR->R. Nice.
image(rgbimage(x(:,:,[3,4,5]))) % Even more blueshifted data, mapping
% R->B, NearIR->G, IR->R. Nicer.

The visual spectrum image (i.e. the first plot above) is visually dark. A visual improvement can be obtained by removing the highest and lowest values, and rescaling:

% Find the 2.5 and 97.5 percent quantiles for each component:
xc = sort(colstack(x));
xc = xc(round(size(xc,1)*[0.025,0.975]),:);
% Rescale each component:
y = zeros(size(x));
for k=1:size(x,3)
y(:,:,k) = (x(:,:,k)-xc(1,k))/(xc(2,k)-xc(1,k));
end
% Truncate the data:
y = max(0,min(1,y));

The new image data is usually more visually appealing than the original, both for the visual spectrum and for blueshifted images.
6. Some course specific Matlab functions.

- **General files**

 - `fmsn20path` Set path to fmsn20-files.

- **Classification**

 - `kmeans` Classify data using the K-means algorithm.
 - `manualclass` Mark image pixels as belonging to different classes.
 - `normmix_classify` Classify data in a Gaussian mixture model.
 - `normmix_em` Estimate parameters in a Gaussian mixture model.
 - `normmix_kmeans` Use a single K-means to get a random initial estimate.
 - `normmix_posterior` Helper function for `normmix_em`.

- **Fields**

 - `covest_ls` Estimates a Matérn covariance with the Least Squares method.
 - `covest_ml` Estimates a Matérn covariance with the Maximum Likelihood method.
 - `covest_nonparametric` Non-parametric covariance estimator.
 - `distance_matrix` Calculates the distance matrix for a set of locations.
 - `matern_covariance` Calculates Matérn covariances.

- **Graphics**

 - `globe_plot` Plot a field defined on a spherical grid.
 - `hist2` Calculate and display 2D-histograms.
 - `landsatimage` Make an RGB image matrix from LANDSAT data.
 - `rgbimage` Make an RGB image from several weight images.
 - `trisphere2anglegrid` Map a spherical field to a flat projection.

- **Markov random fields**

 - `calc_gmrfprops` Helper function for calculating pointwise GMRF properties.
 - `gmrf_mcmc_skeleton` Simulate GMRF parameters with MCMC, and perform calculations
 - `gmrf_negloglike_skeleton` Calculate the GMRF data likelihood.
 - `gmrf_param_hessian` Calculates the hessian for a negated log-likelihood
 - `gmrf_param_map` Finds the MAP estimate in a simple field model.
 - `gmrfprec` Constructs a precision matrix for a GMRF on a regular grid
 - `igmrfprec` Constructs a precision matrix for a 1:st or 2:nd order IGMRF
 - `igmrfprec_sphere` Constructs a precision matrix for spherical IGMRF
 - `matern_prec_matrices` Calculate matrices need to build Matérn precisions
 - `mrf_gaussian_est` Weighted estimate of Gaussian parameters
 - `mrf_gaussian_post` Posterior alpha-parameters in a MRF with Gaussian data
 - `mrf_icm` Estimate the MAP field from an MRF model
 - `mrf_ple` Pseudo-likelihood estimation of MRF parameters
 - `mrf_sim` Simulate a samples for a MRF
 - `reorder_trigraph` Reorder nodes in a triangular graph for nice Cholesky
• Miscellany

colstack Column stack multidimensional images.
icolstack Revert column stacking of multidimensional images.
defstruct Fill struct with default values.
fillholes Fill NaN-holes in an image.
helmert Construct a Helmert (sub-)matrix.
indicshape Compute an indicator image for a shape.
lanread Read Landsat data file type .lan
noise01 Modify binary image with noise.
pca Perform Principal Component transformation of data.
polyimage Computes an aliased indicator image for a polygon.
preshape Compute the preshapes of landmark objects.
reparameterise Reparamatises a shape to obtain equidistant landmarks.
rotmat Generate a rotation matrix.
simplespline Compute a spline interpolation of a sequence of landmarks.
sphereHarmonics Creates spherical harmonic functions.
triSphere Triangulates a sphere.
vec Vectorise a landmark matrix.
ivec The inverse of vec, anti-vectorise landmarks.
• Shape analysis

gmrf_snake Estimate a closed shape using a GMRF-snake model.
mark Mark landmarks in an image.
procrustes_align Perform Procrustes alignment of landmark data.
procrustes_dist Compute Procrustes distances.
procrustes_mean Estimate the Procrustes mean.
shape_tangent_inv Compute pre-shapes from shape tangent coordinates.
shape_tangent Compute vectorised shape space tangent coordinates.
snake_neg_loglike Calculate negative log-likelihood for a snake.
• Warping

tps_prep Precompute data for use in tps_pull and tps_push
tps_pull Computes a pull warp
tps_push Computes a push warp

Older low level routines

tps_warp0 Deform an image using a TPS warp.
tps_warp0_prep Precompute data for use in tps_warp0
tps_warp1 Deform an image using an inverse TPS warp.
tps_warp1_prep Precompute data for use in tps_warp1