FMSF15/MASC03: Markov processes, fall semester 2012

Here you will find current information for the fall semester 2012.

Course contents

Discrete Markov chains and Markov processes; classification of states and chains/processes; stationary distributions and convergence; absorbing states and absorption times; simulation and inference; Poisson processes on the real line and more general spaces; additional material.

Lectures

The first lecture will be held on September 3, 13:15-15:00, in room M:D.

Course administrator and lecturer

Jimmy Olsson, MH:317
phone: 046-222 85 52,
e-mail: jimmy@maths.lth.se

Plan for lectures (preliminary!)

Mon 3/9Hall M:D Introduction, stochastic processes (Ch 1). Review: Random variables, independence, conditional probability, law of total probability, decomposition of joint probabilities. slides
Wed 5/9Hall K:F Discrete Markov chains: definition, transition probabilities, Chapman-Kolmogorov equation. (Ch 2.1-2.2) slides
Mon 10/9Hall K:B Stationary distributions and chains, global and local balance. (Ch 2.3) slides
Wed 12/9Hall K:F Classification of states and chains, the ergodic theorem. (Ch 2.4) slides
Mon 17/9Hall K:B Absorbing states and absorption times for Markov chains. (Ch. 2.5) slides
Wed 19/9Hall K:F Simulation of Markov chains. The intensity concept. Discrete Markov processes: definition. (Ch 2.6-2.7,3.1,4.1) slides
Mon 24/9Hall K:B Transition intensities, Kolmogorov's forward and backward equations. (Ch. 4.1-4.2) slides
Wed 26/9Hall K:D Waiting times, embedded Markov chains. Stationarity, global and local balance. (Ch 4.2-4.3) slides
Mon 1/10Hall K:B The cutting method. slides
Wed 3/10Hall K:D Classification of states and chains for Markov processes. Absorbing states and absorption times for Markov processes. Simulation. Introduction to the Poisson process. (4.4-4.10, 3.1) slides
Mon 8/10Hall K:B Fundamental properties of Poisson processes: recurrence times, conditional distributions. (Ch 3.3-3.4) slides
Wed 10/10Hall K:D Non-homogeneous Poisson processes, operations on Poisson processes. Spatial and general Poisson processes. (Ch. 3.4-3.6) slides
Mon 15/10Hall K:B Recapitulation. slides
Wed 17/10Hall K:D Recapitulation. Review of some old exams.

Exercises

The exercises can be downloaded here.

Answers and hints can be found here. These will be updated as the course progresses.

The following problems will be treated during the exercise classes. The list is still preliminary and may be updated as the course evolves. All students are encouraged to do all exercises and to be prepared to discuss the solutions in class.

Week 1 E1, E2, E3, 001, 002, 003, 004.
Week 2 103, 107, 106, 201, 203, 302, 205, E4.
Week 3 104, 302, 401, 402, 403, 404, 405, 406, 410, 427, E5.
Week 4 502, 505, 506, 512, 508.
Week 5 303, 304, 109, 112, 414, 417, 415, 418, 420, 422, 509.
Week 6 704, 707, 708, 709, 711, 712, 713, 721,
Week 7 Old exams. General discussion of the course, questions, problems, etc.

Computer labs

The course comprises two computer labs. You are required to do these in order to pass the course.

LAB 1 (Thursday October 4, 13:15-16:00, MH:230 and MH:231). Instructions for the lab are available in pdf format here.

Matlab files needed for the first lab: knapp.m, monopgata.m, pestimering.m, seep.m, eigv.m, move.m, simulering.m, field.m, monop.m, pchk.m, psimulering.m.

LAB 2 (Thursday October 11, 13:15-16:00, MH:230 and MH:231). Instructions for the lab are available in pdf form here.

Matlab files needed for the second lab: porand.m, coal.dat, inhom_poisson_lambda.m, inhom_poisson_simulate.m, inhom_poisson_deriv.m, inhom_poisson_est.m.

Table of formulas

  1. A table of formulas that may be used at the exam is available here.
  2. A collection of basic formulas and tables of probability theory and statistics is found here.

Scheduled exams

(Please check the central exam schedule here for possible changes in the scheduled exams at LTH.)

Jimmy Olsson
Last modified: Tuesday August 21, 17:41:40 CEST 2012