Lecture 3, Estimation and model validation

Erik Lindström

FMS161/MASSM18 Financial Statistics
Maximum likelihood

Let \(x^{(N)} = (x_1, \ldots, x_N) \) be a sample from some parametric class of models with known density \(f_{x^{(N)}}(x_1, \ldots, x_n; \Theta) = L(x^{(N)}; \theta) \), where \(\theta \in \Theta \) is some unknown parameter vector.

The **Maximum Likelihood estimator** (MLE) is defined as

\[
\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \Theta} L(x^{(N)}; \theta)
\]

Taking logarithm does not change the argument, so this is equivalently written as

\[
\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \Theta} \ell(x^{(N)}; \theta)
\]

where \(\ell(\theta) = \log L(x^{(N)}; \theta) \).
The asymptotic distribution for the MLE is given by

$$\sqrt{N} \left(\hat{\theta} - \theta \right) \overset{d}{\to} N \left(0, I_N(\theta)^{-1} \right)$$

(3)

Theorem (Cramer-Rao)

Let $T(X_1, \ldots, X_N)$ be an unbiased estimator of θ then

$$V(T(X^N)) \geq I_N(\theta)^{-1} = - \left(E \left[\nabla_\theta \nabla_\theta \log(L(x^{(N)}; \theta)) \right] \right)^{-1},$$

and the MLE attains this lower bound.
The asymptotic distribution for the MLE is given by

$$\sqrt{N} \left(\hat{\theta} - \theta \right) \xrightarrow{d} N \left(0, I_N(\theta)^{-1} \right)$$

(3)

Theorem (Cramer-Rao)

Let $T(X_1, \ldots, X_N)$ be an unbiased estimator of θ then

$$\text{Var}(T(X^N)) \geq I_N(\theta)^{-1} = -\left(E \left[\nabla_{\theta} \nabla_{\theta} \log(L(x^{(N)}; \theta)) \right] \right)^{-1},$$

and the MLE attains this lower bound.
Examination of the data

Before starting to do any estimation we should carefully look at the dataset.

- Are the data correct?
- Do the data contain outliers?
- Missing values?
- Do we have measurements of all relevant explanatory variables?
- Timing errors?
Model validation

There are two types of validation.

- **Absolute.** Are the model conditions fulfilled?
- **Relative.** Is the estimated model good enough, compared to some other model. Both can still be wrong...
There are two types of validation.

- Absolute. Are the model conditions fulfilled?
- Relative. Is the estimated model good enough, compared to some other model. Both can still be wrong...
Model validation

There are two types of validation.

▶ Absolute. Are the model conditions fulfilled?

▶ Relative. Is the estimated model good enough, compared to some other model. Both can still be wrong...
There are two types of validation.

- **Absolute.** Are the model conditions fulfilled?
- **Relative.** Is the estimated model good enough, compared to some other model. *Both can still be wrong...*
Model validation

There are two types of validation.

- **Absolute.** Are the model conditions fulfilled?
- **Relative.** Is the estimated model good enough, compared to some other model. Both can still be wrong...
We have some external knowledge of data e.g. underlying physics (Gray box models).

- Looking at the estimated parameters does the model make sense.
- Are effects going in the right directions?
- Do the parameters have reasonable values?
Residuals

The residuals $\{e\}$ Should be i.i.d. This implies:

No auto-dependence

$$\text{Cov}(f(e_n), g(e_{n+k})) = 0, \forall k \in \mathbb{Z}, \forall f, g,$$

such that $\mathbb{E}[f(e)^2] < \infty, \mathbb{E}[g(e)^2] < \infty$.

No cross correlation:

$$\text{Cov}(f(e_n), g(u_{n+k})) = 0, \forall k \in \mathbb{Z}, \forall f, g,$$

such that $\mathbb{E}[f(e)^2] < \infty, \mathbb{E}[g(u)^2] < \infty$ where u is some external signal used as explanatory variable.
Residuals

The residuals \(\{e\} \) Should be i.i.d. This implies:

No auto-dependence

\[
\text{Cov}(f(e_n), g(e_{n+k})) = 0, \forall k \in \mathbb{Z}, \forall f, g,
\]

such that \(\mathbb{E}[f(e)^2] < \infty, \mathbb{E}[g(e)^2] < \infty \).

No cross correlation:

\[
\text{Cov}(f(e_n), g(u_{n+k})) = 0, \forall k \in \mathbb{Z}, \forall f, g,
\]

such that \(\mathbb{E}[f(e)^2] < \infty, \mathbb{E}[g(u)^2] < \infty \) where \(u \) is some external signal used as explanatory variable.
The residuals \(\{e\} \) should be i.i.d. This implies:

No auto-dependence

\[
\text{Cov}(f(e_n), g(e_{n+k})) = 0, \forall k \in \mathbb{Z}, \forall f, g,
\]

such that \(\mathbb{E}[f(e)^2] < \infty, \mathbb{E}[g(e)^2] < \infty \).

No cross correlation:

\[
\text{Cov}(f(e_n), g(u_{n+k})) = 0, \forall k \in \mathbb{Z}, \forall f, g,
\]

such that \(\mathbb{E}[f(e)^2] < \infty, \mathbb{E}[g(u)^2] < \infty \) where \(u \) is some external signal used as explanatory variable.
Normalized prediction errors

Residuals are usually normalized prediction errors

\[e_n = \frac{y_n - \mathbb{E}[Y_n|\mathcal{F}_{n-1}]}{\sqrt{V(Y_n|\mathcal{F}_{n-1})}}. \]

This can in many cases also be generalized to SDE-models.
Formal tests

- Test for dependence in residuals (Box-Ljung).

\[T = N(N+2) \sum_{k=1}^{l} \frac{\gamma(k)^2}{N-k}. \text{ Reject if } T > \chi^2_{1-\alpha,l}. \]

- Signtest on residuals \# of positive \(\in \text{Bin}(N, 1/2) \).

- Resimulate the model from residuals. Can it reproduce data?
Scatterplots of residuals

- e_n vs e_{n-1} (autocorr).
- e_n vs $y_{n|n-1} = \mathbb{E}[y_n|\mathcal{F}_{n-1}]$ prediction error- remaining auto dependence.
- e_n vs u_n external dependence.
A good example (a well estimated AR(1) process)

\[e_{n-1} \text{ vs } e_n \]

\[e_n \text{ vs } y_{n|n-1} \]

SACF

Normplot
An example of wrong order (an AR(2) model estimated with a AR(1) model)

\[e_{n-1} \text{ vs } e_n \]

\[e_n \text{ vs } y_{n|n-1} \]

SACF

Normplot

Erik Lindström
Lecture 3, Estimation and model validation
An example of wrong model structure (a non-linear model estimated with a AR(1) model)

$$e_{n-1} \text{ vs } e_n$$

$$e_n \text{ vs } y_{n|n-1}$$

SACF

Normplot
Note that overfitting gives residuals that look good. Therefore it is important to test predictions also out of sample.

- Split data into an estimation and a validation set.
- Cross validation
Example overfitting (ARMA(1,1) fitted with ARMA(3,3))

\[e_{n-1} \text{ vs } e_n \text{ insamp} \]

\[e_{n-1} \text{ vs } e_n \text{ outsamp} \]

SACF insamp

SACF outsamp

Erik Lindström
Lecture 3, Estimation and model validation
Relative model validation

Test if a large model is really necessary.

\[H_0 : \theta' = \theta'_0 \]
\[H_1 : \theta' \text{ free}. \]

Hypothesis test Wald or LR.

Wald:

\[l_{\hat{\theta}} = \hat{\theta} \pm \lambda_{\alpha/2} d(\hat{\theta}) \]
Let $Q(n)$ be the sum of squared residuals for an estimated model with n parameters from N observations.

Test n_1 vs n_2 parameters, then for true order $n_0 \leq n_1 < n_2$

i) $\frac{Q(n_2)}{\sigma^2} \in \chi^2(N - n_2)$.

ii) $\frac{Q(n_1) - Q(n_2)}{\sigma^2} \in \chi^2(n_2 - n_1)$.

iii) $Q(n_2)$ and $Q(n_1) - Q(n_2)$ are independent.

iv) $\eta = \frac{N-n_2}{n_2-n_1} \frac{Q(n_1) - Q(n_2)}{Q(n_2)} \in F(n_2 - n_1, N - n_2)$.

If η is large pick model 2 else pick model 1. This is an exact test for AR models.
Asymptotic tests

\[LR = -2 \left(\log(L(\theta^{\text{Model}1}) - \log(L(\theta^{\text{Model}2})) \right) \]

If model 1 has \(n_1 \) parameters and model 2 has \(n_2 \) parameters \(n_2 > n_1 \) then \(LR \) is asymptotically distributed as

\[LR \overset{d}{\to} \chi^2(n_2 - n_1). \]

(4)

This is true for all models where the likelihood regularity conditions apply (a very large class of distributions) if \(N \) is large. This is the most powerful test in the sense of Neyman-Pearson.
The main idea is to penalize too many parameters.

- AIC (Akaike's Information Criteria): $-2 \log(L(\theta)) + 2 \dim(\theta)$, where the minimum is taken as $\dim(\theta)$. Problem it overestimates the model order.

- BIC (Bayesian Information Criteria): $-2 \log(L(\theta)) + 2 \dim(\theta) \log(N)$. This slightly underestimates the model order.

- Alternative LIL (law of iterated logarithm): $-2 \log(L(\theta)) + 2 \dim(\theta) \log(\log(N))$.
Example choice of model AR(3) process

The number of observations is 500 the number of replicates is 200

<table>
<thead>
<tr>
<th>crit/order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>≥11</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>13</td>
<td>11</td>
<td>15</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>89</td>
</tr>
<tr>
<td>BIC</td>
<td>0</td>
<td>78</td>
<td>122</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LIL</td>
<td>0</td>
<td>4</td>
<td>140</td>
<td>29</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>