x = 1:length(wooster$data[,2]) usin = function(x, a, b, d) { a + b * sin(((x - d) * 2 * pi)/365.25) } wu = usin(x, -30, 25, -75) winter = c(rep(c(rep(1, 61), rep(0, 273), rep(1, 31)), 5), 1) spring = c(rep(c(rep(0, 61), rep(1, 91), rep(0, 365 - 91 - 61)), 5), 0) summer = c(rep(c(rep(0, 61 + 91), rep(1, 91), rep(0, 365 - 91 - 61 - 91)), 5), 0) fall = c(rep(c(rep(0, 61 + 91 + 91), rep(1, 91), rep(0, 365 - 91 - 61 - 91 - 91)), 5), 0) rescale.covariate = function(x) { r.x = range(x) x.01 = (x-r.x[1])/diff(r.x) 2*x.01-1 } ydat = cbind(sin((x * 2 * pi)/365.25), cos((x * 2 * pi)/365.25 ), rescale.covariate(x), winter, spring, summer, fall) fit.model1 = pp.fit( - wooster$data[,2], threshold = wu,muinit=20.67317, siginit=13.05087 ,shinit=-0.0765431) fit.model2 = pp.fit( - wooster$data[,2], threshold = wu, ydat = ydat, mul = 1:2,siglink = exp, muinit=c(-12,7,24), siginit=3,shinit= -0.1) fit.model3 = pp.fit( - wooster$data[,2], threshold = wu, ydat = ydat,mul = 1:2, sigl = 1:2, siglink = exp,muinit=c(-15,9,29),siginit=c(0.4,0.3,0.1),shinit=-0.3) fit.model4 = pp.fit( - wooster$data[,2], threshold = wu, ydat = ydat,mul = 1:2, shl=1:2,sigl = 1:2, siglink = exp,muinit=c(-15,9,29),siginit=c(0.4,0.3,0.1),shinit=c(0.1,0.1,0.1))